Theoretical Chemistry Accounts

, Volume 116, Issue 1–3, pp 148–159 | Cite as

A first principles approach to optimal control

  • Leticia González
  • Jürgen Full
Regular Article


This article shows that by using ab initio or first principle calculations it is possible to obtain reliable ingredients needed to simulate pump-probe and optimal control experiments. Our experimental challenge is to elucidate the reaction mechanism behind an optimal pulse tailored to maximize ionization in the system CpMn(CO)3, while avoiding CO dissociation. Starting from MRCI/CASSCF potential energy curves calculated along the relevant CO fragmentation channel, we use the resulting MRCI wave function to estimate non-adiabatic couplings, as well as neutral-to-neutral and neutral-to-ionic dipole couplings. The state-of-the-art potentials and couplings serve to perform wave packet propagations which simulate the femtosecond pump-probe spectra that explain the features shown in the experimental optimal pulse.


Organometallics Multiconfigurational methods Reaction dynamics Femtochemistry Optimal control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zewail AH (2000). (Nobel lecture) Angew Chem Int Ed 39:2586CrossRefGoogle Scholar
  2. 2.
    Crim F (1990). Science 249:1387Google Scholar
  3. 3.
    Shapiro M, Brumer P (1986). Chem Phys Lett 126:541CrossRefGoogle Scholar
  4. 4.
    Tannor DJ, Rice SA (1985). J Chem Phys 83:5013CrossRefGoogle Scholar
  5. 5.
    Tannor DJ, Kosloff R, Rice SA (1986). J Chem Phys 85:5805CrossRefGoogle Scholar
  6. 6.
    Bergmann K, Theuer H, Shore BW (1998). Rev Mod Phys 70:1003CrossRefGoogle Scholar
  7. 7.
    Rabitz H, de Vivie-Riedle R, Motzkus M, Kompa K (2000). Science 288:824CrossRefPubMedGoogle Scholar
  8. 8.
    Baumert T, Thalweiser R, Weiss V, Gerber G (1995). Femtosecond chemistry. VCH, WeinheimGoogle Scholar
  9. 9.
    Zhu L, Suto K, Fiss J, Wada R, Seidan T, Gordon RJ (1997). Phys Rev Lett s78:4108CrossRefGoogle Scholar
  10. 10.
    Thompson DL (1998). Modern methods for multidimensional dynamics computations in chemistry. World Scientific, SingaporeGoogle Scholar
  11. 11.
    Kühn O, Manz J, Miller WH (eds). (2004). Multidimensional quantum reaction dynamics, vol 304 (1–2), Chem Phys (special issue).Google Scholar
  12. 12.
    Judson RS, Rabitz H (1992). Phys Rev Lett 68:1500CrossRefPubMedGoogle Scholar
  13. 13.
    Brixner T, Gerber G (2003). Chem Phys Chem 4:418PubMedGoogle Scholar
  14. 14.
    Bardeen CJ, Yakovlev V, Wilson K, Carpenter S, Weber PM, Warren W (1997). Chem Phys Lett 280:151CrossRefGoogle Scholar
  15. 15.
    Assion A, Baumert T, Bergt M, Brixner T, Kiefer B, Seyfried V, Strehle M, Gerber G (1998). Science 282:919CrossRefPubMedGoogle Scholar
  16. 16.
    Brixner T, Damrauer NH, Gerber G, Niklaus P (2001). Nature 414:57CrossRefPubMedGoogle Scholar
  17. 17.
    Glaß A, Rozgonyi T, Feurer T, Szabó G, Sauerbrey R (2000). Appl Phys B71:267Google Scholar
  18. 18.
    Levis RJ, Menkir GM, Rabitz H (2001). Science 292:709CrossRefPubMedGoogle Scholar
  19. 19.
    Vajda Š et al (2002). Ultrafast dynamics in molecular science. World Scientific, SingaporeGoogle Scholar
  20. 20.
    Herek JL, Wohlleben W, Cogdell RJ, Zeidler D, Motzkus M (2002). Nature 417:533CrossRefPubMedGoogle Scholar
  21. 21.
    Geremia JM, Zhu WS, Rabitz H (2000). J Chem Phys 113:10841CrossRefGoogle Scholar
  22. 22.
    Hornung T, Motzkus M, de Vivie-Riedle R (2001). J Chem Phys 115:3105–3110CrossRefGoogle Scholar
  23. 23.
    Hornung T, Motzkus M, de Vivie-Riedle R (2002). Phys Rev A 65:021403CrossRefGoogle Scholar
  24. 24.
    Kurtz L, Rabitz H, de Vivie-Riedle R (2002). Phys Rev A 65:032514CrossRefGoogle Scholar
  25. 25.
    Zhu W, Rabitz H (1999). J Chem Phys 111:472CrossRefGoogle Scholar
  26. 26.
    Mitra A, Rabitz H (2003). Phys Rev A 67:033407CrossRefGoogle Scholar
  27. 27.
    White JL, Pearson BJ, Bucksbaum PH (2004). quant-ph/0401018Google Scholar
  28. 28.
    Mancal T, May V (2002). Chem Phys Lett 362:407CrossRefGoogle Scholar
  29. 29.
    Daniel C, Full J, González L, Lupulescu C, Manz J, Merli A, Vajda S, Wöste L (2003). Science 299:536CrossRefPubMedGoogle Scholar
  30. 30.
    Manz J, Wöste L (eds). (1995). Femtosecond chemistry. VCH, WeinheimGoogle Scholar
  31. 31.
    Eickeyer F, Kaindl RA, Woerner M, Elsaesser T, Weiner AM (2000). Opt Lett 25:1472Google Scholar
  32. 32.
    Witte T, Hornung T, Windhourn L, Proch D, de~Vivie-Riedle R, Motzkus M, Kompa KL (2003). J Chem Phys 118:2021CrossRefGoogle Scholar
  33. 33.
    Olivucci M (eds). (2005). Computational photochemistry. Elsevier, AmsterdamGoogle Scholar
  34. 34.
    Banares L, Baumert T, Bergt M, Kiefer B, Gerber G (1997). Chem Phys Lett 267:141CrossRefGoogle Scholar
  35. 35.
    Trushin SA, Fuss W, Schmid WE, Kompa L (1998). J Phys Chem 102:4129Google Scholar
  36. 36.
    Trushin SA, Fuss W, Kompa L, Schmid W (2000). Chem Phys 259:313CrossRefGoogle Scholar
  37. 37.
    Matsubara T, Daniel C, Veillard A (1994). Organometallics 13:4905CrossRefGoogle Scholar
  38. 38.
    Daniel C, Kolba E, Lehr L, Manz J, Schröder T (1994). J Phys Chem 98:9823CrossRefGoogle Scholar
  39. 39.
    Finger K, Daniel C, Saalfrank P, Schmidt B (1996). J Phys Chem 100:3368CrossRefGoogle Scholar
  40. 40.
    Erdman M, Rubner O, Shen Z, Engel V (2001). Chem Phys Lett 341:338CrossRefGoogle Scholar
  41. 41.
    Rubner O, Engel V (2001). J Chem Phys 115:2936CrossRefGoogle Scholar
  42. 42.
    Paterson MJ, Hunt PA, Robb MA, Takahashi O (2002). J Phys Chem 106:10494Google Scholar
  43. 43.
    Trushin SA, Fuss W, Schmid W (2004). J Chem B 37:3987Google Scholar
  44. 44.
    Full J, Daniel C, González L (2001). J Phys Chem A 105:184CrossRefGoogle Scholar
  45. 45.
    Full J, Daniel C, González L (2003). Phys Chem Chem Phys 5:87CrossRefGoogle Scholar
  46. 46.
    Daniel C, Full J, González L, Kaposta C, Krenz M, Lupulescu C, Manz J, Minoto S, Oppel M, Rosendo-Francisco P, Vajda Š, Wöste L (2001). Chem Phys 267:247CrossRefGoogle Scholar
  47. 47.
    Hirsch G, Bruna PJ, Buenker RJ, Peyerimhoff SD (1980). Chem Phys 45:335CrossRefGoogle Scholar
  48. 48.
    Baer M (1975). Chem Phys Lett 35:112CrossRefGoogle Scholar
  49. 49.
    Full J, González L, Manz J (2005). Chem Phys 314:143CrossRefGoogle Scholar
  50. 50.
    Schön J, Köppel H (1999). J Phys Chem 103:8579Google Scholar
  51. 51.
    Rabitz H (2003). Science 299:525CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institut für Chemie and BiochemieFreie Universität BerlinBerlinGermany

Personalised recommendations