Theoretical Chemistry Accounts

, Volume 116, Issue 1–3, pp 373–382 | Cite as

Detecting Reaction Pathways and Computing Reaction Rates in Condensed Phase

  • Styliani Consta
Regular Article


Methods for the computation of rate constants that characterize classical reactions occurring in the condensed phase are discussed. While microscopic expressions for these transport properties are well known, their computation presents challenges for simulation since reactive events often occur rarely, and the long time scales that are typical for reactive processes are not accessible using simple molecular dynamics methods. Furthermore, the underlying free energy surface is very complex with many saddle points that prevent sampling of possible reaction pathways. As a result, the reaction coordinate may be a complex many-body function of the system’s degrees of freedom. Since there is not an a priori way to define a “good” reaction coordinate, methods are being developed to assist in a systematic construction of a reaction coordinate. These methods are reviewed and examples of non-trivial reaction coordinates are presented.


Chem Phys Condensed Phase Free Energy Surface Reaction Coordinate Generalize Langevin Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonn M, Funk S, Hess CH, Denzler DN, Stampfl C Scheffler M Wolf M, Ertl G (1999). Science 285:1042CrossRefGoogle Scholar
  2. 2.
    Neumark DM (2004). In: Yang X, Liu K (eds). In: Advanced series in physical chemistry, modern trends in chemical reaction dynamics (part 1). vol. 14. World Scientific Publishing, Singapore, p 453Google Scholar
  3. 3.
    Neumark DM (2005). Phys Chem Chem Phys 7(14):433CrossRefGoogle Scholar
  4. 4.
    Folmer DE, Poth L, Wisniewski ES, Castleman AW (1998). J Chem Phys Lett 287:1CrossRefGoogle Scholar
  5. 5.
    Zewail AH (1994). In: Femtochemistry: ultrafast dynamics of the chemical bond. World Scientific, SingaporeGoogle Scholar
  6. 6.
    Stolow A, Bragg AE, Neumark DM (2004). Chem Rev 104:1719CrossRefGoogle Scholar
  7. 7.
    Dermota TE, Zhong Q, Castleman AWJ (2004). Chem Rev 104:1861CrossRefGoogle Scholar
  8. 8.
    Elles CG, Cox MJ, Barnes GL, Crim FF (2004). J Phys Chem A 108:10973Google Scholar
  9. 9.
    Frenkel D, Smit B (2001). In: Understanding molecular simulation: from algorithms to applications, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Sachs C, Hildebrand M, Volkening S, Wintterlin J, Ertl G (2001). Science 293:1635CrossRefGoogle Scholar
  11. 11.
    Hnggi P, Talkner P, Borkovec M (1990). Rev Mod Phys 62:251–341CrossRefGoogle Scholar
  12. 12.
    Cramer CJ, Truhlar DG (1999). Chem Rev 99:2161–2200CrossRefGoogle Scholar
  13. 13.
    Berne BJ, Ciccotti G, Coker DF (eds). (1998). In: Classical and quantum dynamics in condensed phase simulations. World Scientific Publishing, SingaporeGoogle Scholar
  14. 14.
    Kapral R, Ciccotti G (2005). In: Dykstra C (ed). Theory and applications of computational chemistry. Elsevier BV, AmsterdamGoogle Scholar
  15. 15.
    Truhlar DG, Garrett BC, Klippenstein SJ (1996). J Phys Chem 100:12771–12800CrossRefGoogle Scholar
  16. 16.
    Smoluchowski MV (1915). Ann Phys 48:1103Google Scholar
  17. 17.
    Kramers HA (1940). Physica 7:284CrossRefGoogle Scholar
  18. 18.
    Grote F, Hynes JT (1980). J Chem Phys 73:2715CrossRefGoogle Scholar
  19. 19.
    Grote F, Hynes JT (1981). J Chem Phys 74:4465CrossRefGoogle Scholar
  20. 20.
    Grote F, Hynes JT (1981). J Chem Phys 75:2191CrossRefGoogle Scholar
  21. 21.
    Adelman SA, Muralidhar R (1991). J Chem Phys 95:2752CrossRefGoogle Scholar
  22. 22.
    Gertner BJ, Wilson KR, Hynes JT (1989). J Chem Phys 90:3537CrossRefGoogle Scholar
  23. 23.
    Ciccotti G, Hynes JT, Kapral R (1990). J Chem Phys 93:7137CrossRefGoogle Scholar
  24. 24.
    Zwanzig R (2001). Nonequilibrium statistical mechanics. Oxford University Press, New YorkGoogle Scholar
  25. 25.
    Zhou H-X, Zwanzig R (2002). J Phys Chem 106:7562Google Scholar
  26. 26.
    van der Zwan G, Hynes JT (1983). J Phys Chem 78:4174CrossRefGoogle Scholar
  27. 27.
    van der Zwan G, Hynes JT (1984). Chem Phys 80:21CrossRefGoogle Scholar
  28. 28.
    Dakhnovskii YI, Ovchinnikov AA (1985). Phys Lett 113A:147CrossRefGoogle Scholar
  29. 29.
    Pollak E (1986). J Chem Phys 85:865CrossRefGoogle Scholar
  30. 30.
    Hnggi P, Weiss U (1984). Phys Rev A 29:2265CrossRefGoogle Scholar
  31. 31.
    Straub JE, Berne BJ (1986). J Chem Phys 85:2999CrossRefGoogle Scholar
  32. 32.
    Talkner P, Hnggi P (eds). (1995). In: New trends in Kramers’ reaction rate theory. Kluwer, DordrechtGoogle Scholar
  33. 33.
    Yamamoto T (1960). J Chem Phys 33:281CrossRefGoogle Scholar
  34. 34.
    Chandler D (1978). J Chem Phys 68:2959CrossRefGoogle Scholar
  35. 35.
    Bennet CH (1977). In: Christofferson RE (ed). Algorithms for chemical computations. ACS Symp. Ser. No. 46. American Chemical Society, Washington, DC. p 63Google Scholar
  36. 36.
    Kapral R (1981). Adv Chem Phys 48:71Google Scholar
  37. 37.
    Chandler D (1987). In: Introduction to modern statistical mechanics. Oxford University Press, New YorkGoogle Scholar
  38. 38.
    Voth GA, Chandler D, Miller WH (1989). J Phys Chem 93:7009CrossRefGoogle Scholar
  39. 39.
    Ciccotti G, Ferrario M, Laria D, Kapral R (1995). In: Manghi F, Reatto L (eds). Progress in computational physics of matter: methods, software and applicationsGoogle Scholar
  40. 40.
    Kapral R (1972). J Chem Phys 56:1842CrossRefGoogle Scholar
  41. 41.
    Zwanzig R (1961). Phys Rev 124:983CrossRefGoogle Scholar
  42. 42.
    Zwanzig R (1965). Ann Rev Phys Chem 16:67CrossRefGoogle Scholar
  43. 43.
    Mori H (1965). Prog Theor Phys 34:399CrossRefGoogle Scholar
  44. 44.
    Mori H (1965). Prog Theor Phys 33:423CrossRefGoogle Scholar
  45. 45.
    Kapral R, Consta S, McWhirter L (1998). In: Berne BJ, Ciccotti G, Coker DF (eds). Classical and quantum dynamics in condensed phase simulations, pp 587Google Scholar
  46. 46.
    Schenter GK, Garrett BC, Truhlar DG (2003). J Chem Phys 119:5828–5833CrossRefGoogle Scholar
  47. 47.
    Torrie GM, Valleau JP (1977). J Comp Phys 23:187CrossRefGoogle Scholar
  48. 48.
    Carter EA, Ciccotti G, Hynes JT, Kapral R (1989). Chem Phys Lett 156:472CrossRefGoogle Scholar
  49. 49.
    Sprik M, Ciccotti G (1998). J Chem Phys 109:7737CrossRefGoogle Scholar
  50. 50.
    Sergi A, Ciccotti G, Falconi M, Desideri A, Ferrario M (2002). J Chem Phys 116:6329CrossRefGoogle Scholar
  51. 51.
    Coluzza I, Sprik M, Ciccotti G (2003). Mol Phys 101:2885CrossRefGoogle Scholar
  52. 52.
    Ciccotti G, Kapral R, Vanden-Eijnden E (2005). Phys Chem Chem Phys (to appear)Google Scholar
  53. 53.
    Laio A, Parrinello M (2002). Proc Natl Acad Sci USA 99:12562CrossRefGoogle Scholar
  54. 54.
    Iannuzzi M, Laio A, Parrinello M (2003). Phys Rev Lett 90:238302CrossRefGoogle Scholar
  55. 55.
    Zeldovich J (1942). J Expr Theor Phys (Russia) 12:525Google Scholar
  56. 56.
    ten Wolde PR, Ruiz-Montero MJ, Frenkel D (1996). J Chem Phys 104:9932CrossRefGoogle Scholar
  57. 57.
    Truhlar DG, Gao JL, Garcia-Viloca M, Alhambra C, Corchado J, Sanchez ML, Poulsen TD (2004). Int J Quant Chem 100:1136–1152CrossRefGoogle Scholar
  58. 58.
    Weinan E, Vanden-Eijnden E (2004). In: Attinger S, Koumoutsakos P (eds) Multiscale modelling and simulation, Lecture notes in computational science and engineering, vol 39. Springer, Berlin Heidelberg New YorkGoogle Scholar
  59. 59.
    Bolhuis PG, Dellago C, Chandler D (1998). Faraday Discuss Chem Soc 110:421CrossRefGoogle Scholar
  60. 60.
    Dellago C, Bolhuis P, Geissler PL (2002). Adv Chem Phys 123:1Google Scholar
  61. 61.
    Bolhuis PG, Chandler D, Dellago C, Geissler PL (2002). Ann Rev Phys Chem 53:291CrossRefGoogle Scholar
  62. 62.
    Pratt LR (1986). J Chem Phys 85:5045CrossRefGoogle Scholar
  63. 63.
    Elber R, Meller J, Olender R (1999). J Phys Chem 103:899Google Scholar
  64. 64.
    Elber R, Shalloway D (2002). J Chem Phys 112:5539CrossRefGoogle Scholar
  65. 65.
    Elber R, Ghosh A, Cárdenas A (2002). Acc Chem Res 35:396CrossRefGoogle Scholar
  66. 66.
    Ulitsky A, Elber R (1990). J Chem Phys 92:1510CrossRefGoogle Scholar
  67. 67.
    Jónsson H, Mills G, Jacobsen KW (1998). In: Berne BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations, pp 385Google Scholar
  68. 68.
    Henkelman G, Jónsson H (2000). J Chem Phys 113:9978CrossRefGoogle Scholar
  69. 69.
    Weinan E, Ren W, Vanden-Eijnden E (2002). Phys Rev B 66:05230Google Scholar
  70. 70.
    Weinan E, Ren WQ, Vanden-Eijnden E (2005). J Phys Chem 109(14):6688Google Scholar
  71. 71.
    Kebarle P (2000). J Mass Spectrom 35:804CrossRefGoogle Scholar
  72. 72.
    Fenn JB, Rosell J, Meng CK (1997). J Am Soc Mass Spectrom 8:1147CrossRefGoogle Scholar
  73. 73.
    Consta S (2002). J Mol Struct Theochem 591:131CrossRefGoogle Scholar
  74. 74.
    Consta S, Mainer KR, Novak W (2003). J Chem Phys 119:10125CrossRefGoogle Scholar
  75. 75.
    Consta S, Kapral R (1999). J Chem Phys 111:10183CrossRefGoogle Scholar
  76. 76.
    Geissler PL, Dellago C, Chandler D, Hutter J, Parrinello M (2001). Sience 291:2121Google Scholar
  77. 77.
    Geissler PL, Dellago C, Chandler D (1999). J Phys Chem B 103:3706CrossRefGoogle Scholar
  78. 78.
    Truhlar DG, Garrett BC (2000). J Phys Chem B 104:1069–1072CrossRefGoogle Scholar
  79. 79.
    McQuarrie DA (1976). In: Statistical mechanics. HarperCollins, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Western OntarioLondonCanada

Personalised recommendations