Theoretical Chemistry Accounts

, Volume 115, Issue 4, pp 330–333 | Cite as

Comment on: “Estimating the Hartree–Fock limit from finite basis set calculations” [Jensen F (2005) Theor Chem Acc 113:267]

  • Amir Karton
  • Jan M. L. Martin
Regular Article


We demonstrate that a minor modification of the extrapolation proposed by Jensen [(2005): Theor Chem Acc 113: 267] yields very reliable estimates of the Hartree–Fock limit in conjunction with correlation consistent basis sets. Specifically, a two-point extrapolation of the form \(E_{{\rm HF},L} = E_{{\rm HF},\infty} + A(L + 1)\exp (- 9{\sqrt {L}})\) yields HF limits E HF,∞ with an RMS error of 0.1 millihartree using aug-cc-pVQZ and aug-cc-pV5Z basis sets, and of 0.01 millihartree using aug-cc-pV5Z and aug-cc-pV6Z basis sets.


Basis set convergence Hartree–Fock limit Extrapolation formulas Correlation-consistent basis sets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jensen F (2005) Theor Chem Acc 113:267; DOI: 10.1007/s00214-005-0635-2. To the best of our knowledge, \(\exp (-a{\sqrt N})\) type convergence behavior of the SCF energy was first noted in Klopper W, Kutzelnigg W (1986) J Mol Struct (Theochem) 135:339; DOI: 10.1016/0166-1280(86)80068-9Google Scholar
  2. 2.
    Jensen F (2005). Theor Chem Acc 113:187; DOI: 10.1007/s00214-004-0618-8CrossRefGoogle Scholar
  3. 3.
    Jensen F (2001). J Chem Phys 115:9113; DOI: 10.1063/1.1413524CrossRefGoogle Scholar
  4. 4.
    Jensen F (2002). J Chem Phys 116:7372CrossRefGoogle Scholar
  5. 5.
    Jensen F (2002). J Chem Phys 117:9234; DOI: 10.1063/1.1515484CrossRefGoogle Scholar
  6. 6.
    Jensen F (2003). J Chem Phys 118:2459CrossRefGoogle Scholar
  7. 7.
    Jensen F, Helgaker T (2004). J Chem Phys 121:3463; DOI: 10.1063/1.1756866CrossRefPubMedGoogle Scholar
  8. 8.
    Dunning TH (1989). J Chem Phys 90:1007; DOI: 10.1063/1.456153CrossRefGoogle Scholar
  9. 9.
    Dunning TH, Peterson KA, Wilson AK (2001). J Chem Phys 114:9244; DOI: 10.1063/1.1367373CrossRefGoogle Scholar
  10. 10.
    Martin JML, De Oliveira G (1999). J Chem Phys 111:1843CrossRefGoogle Scholar
  11. 11.
    Parthiban S, Martin JML (2001). J Chem Phys 114:6014; DOI: 10.1063/1.1356014CrossRefGoogle Scholar
  12. 12.
    Boese AD, Oren N, Atasoylu O, Martin JML, Kallay M, Gauss J (2004). J Chem Phys 120:4129; DOI: 10.1063/1.1638736CrossRefPubMedGoogle Scholar
  13. 13.
    Tajti A, Szalay PG, Csaszar AG, Kallay M, Gauss J, Valeev EF, Flowers BA, Vazquez J, Stanton JF (2004). J Chem Phys 121:11599; DOI 10.1063/1.1811608CrossRefPubMedGoogle Scholar
  14. 14.
    MOLPRO is a package of ab initio programs written by Werner H-J, Knowles PJ, Schütz M, Lindh R, Celani P, Korona T, Rauhut G, Manby FR, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pitzer R, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson TGoogle Scholar
  15. 15.
    Martin JML (1998). J Chem Phys 108:2791; DOI:10.1063/1.475670CrossRefGoogle Scholar
  16. 16.
    Feller D, Peterson KA (1999). J Chem Phys 110:8384(1999); DOI: 10.1063/1.478747CrossRefGoogle Scholar
  17. 17.
    Feller D, Sordo JA (2000). J Chem Phys 113:485; DOI: 10.1063/1.481827CrossRefGoogle Scholar
  18. 18.
    Valeev EF, Allen WD, Hernandez R, Sherrill CD, Schaefer HF (2003). J Chem Phys 118:8594; DOI: 10.1063/1.1566744CrossRefGoogle Scholar
  19. 19.
    Schwenke DW (2005). J Chem Phys 122:014107; DOI: 10.1063/1.1824880CrossRefGoogle Scholar
  20. 20.
    Kobus J, Laaksonen L, Sundholm D (1996) Comput Phys Commun 98:348; program website The same program parameters as were shown by Jensen[2] to result in convergence to better than 1 microhartree were used in each caseGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Organic ChemistryWeizmann Institute of ScienceRechovotIsrael

Personalised recommendations