Theoretical Chemistry Accounts

, Volume 116, Issue 1–3, pp 241–252 | Cite as

Douglas–Kroll–Hess Theory: a relativistic electrons-only theory for chemistry

Regular Article

Abstract

A unitary transformation allows to separate (block-diagonalize) the Dirac Hamiltonian into two parts one part: solely describes electrons, while the other gives rise to negative-energy states, which are the so-called positronic states. The block-diagonal form of the Hamiltonian no longer accounts for the coupling of both kinds of states. The positive-energy (‘electrons-only’) part can serve as a ‘fully’ relativistic electrons-only theory, which can be understood as a rigorous basis for chemistry. Recent developments of the Douglas–Kroll–Hess (DKH) method allowed to derive a sequence of expressions, which approximate this electrons-only Hamiltonian up to arbitrary-order. While all previous work focused on the numerical stability and accuracy of these arbitrary-order DKH Hamiltonians, conceptual issues and paradoxa of the method were mostly left aside. In this work, the conceptual side of DKH theory is revisited in order to identify essential aspects of the theory to be distinguished from purely computational consideration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Einstein A (1905). Ann Phys (Leipzig) 17:891–921Google Scholar
  2. 2.
    Bagus PS, Lee YS, Pitzer KS (1975). Chem Phys Lett 33:408–411CrossRefGoogle Scholar
  3. 3.
    Pyykkö P, Desclaux J-P (1979). Acc Chem Res 12:276–281CrossRefGoogle Scholar
  4. 4.
    Ziegler T, Snijders JG, Baerends EJ (1981). J Chem Phys 74:1271–1284CrossRefGoogle Scholar
  5. 5.
    Pitzer KS (1979). Acc Chem Res 12:271–276CrossRefGoogle Scholar
  6. 6.
    Pyykkö P (1988). Chem Rev 88:563–594CrossRefGoogle Scholar
  7. 7.
    Schwerdtfeger P (eds). (2002). Relativistic electronic structure theory. Part 1. Fundamentals. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Schwerdtfeger P (eds) (2004). Relativistic electronic structure theory. Part 2. Applications. Elsevier, BerlinGoogle Scholar
  9. 9.
    Hess BA (eds) (2003). Relativistic effects in heavy-element chemistry and physics. Wiley, New YorkGoogle Scholar
  10. 10.
    Hirao K, Ishikawa Y (eds) (2004). Recent advances in relativistic effects in chemistry. World Scientific Publishing, SingaporeGoogle Scholar
  11. 11.
    Feynman RP (1961). Quantum electrodynamics. Benjamin, New YorkGoogle Scholar
  12. 12.
    Gupta SN. (1977). Quantum electrodynamics. Gordon and Breach Science Publishers, New YorkGoogle Scholar
  13. 13.
    Mohr PJ, Plunien G, Soff G (1998). Phys Rep 293:227–369CrossRefGoogle Scholar
  14. 14.
    Dirac PAM (1928). Proc Roy Soc London A 117:610–624Google Scholar
  15. 15.
    Dirac PAM (1928). Proc Roy Soc London A 118:351–361Google Scholar
  16. 16.
    Thaller B (1992). The Dirac equation. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. 17.
    Goidenko I, Labzowsky L, Eliav E, Kaldor U, Pyykkö P (2003). Phys Rev A 67:020102, 1–3Google Scholar
  18. 18.
    Schwabl F (2004). Quantenmechanik für Fortgeschrittene, 3rd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. 19.
    Reiher M, Hinze J (2002). Four-component ab initio methods for electronic structure calculations of atoms, molecules, and solids. In: Hess BA (eds). Relativistic effects in heavy-element chemistry and physics. Wiley, ChichesterGoogle Scholar
  20. 20.
    Jensen HJA, Saue T, Visscher L et al (2004) DIRAC, a relativistic ab initio electronic structure program, Release DIRAC04.0, http://dirac.chem.sdu.dkGoogle Scholar
  21. 21.
    Pyykkö P (1986). Relativistic theory of atoms and molecules—a bibliography 1916–1985. Volume 41 of Lecture Notes in Chemistry. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. 22.
    Pyykkö P (1993). Relativistic theory of atoms and molecules II – a bibliography 1986–1992. Volume 60 of Lecture Notes in Chemistry. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. 23.
    Pyykkö P (2000). Relativistic theory of atoms and molecules, vol III – A Bibliography 1993–2000. Springer, Berlin Heidelberg New YorkGoogle Scholar
  24. 24.
    Pyykkö P (2004) Database ‘RTAM’—relativistic quantum chemistry database 1915–2004; http://www.csc.fi/rtam/Google Scholar
  25. 25.
    Wolf A, Reiher M, Hess BA (2002). Two-component methods and the generalised Douglas–Kroll transformation. In: Schwerdtfeger P (eds). Relativistic quantum chemistry, vol I. Theory; Theoretical and computational chemistry. Elsevier, Amsterdam, pp. 622–663Google Scholar
  26. 26.
    Wolf A, Reiher M, Hess BA (2004). Transgressing theory boundaries: the generalized Douglas–Kroll transformation. In: Hirao K, Ishikawa Y (eds). Recent advances in relativistic effects in chemistry. World Scientific Publishing, Singapore, pp. 137–190Google Scholar
  27. 27.
    Reiher M, Wolf A, Hess BA (2005) Relativistic quantum chemistry: from quantum electrodynamics to quasi-relativistic methods. In: Rieth M, Schommers W (eds) Handbook of theoretical and computational nanotechnology. American Scientific Publishers, Stevenson Ranch (in press)Google Scholar
  28. 28.
    van Lenthe E, Baerends E-J, Snijders JG (1993). J Chem Phys 99:4597–4610CrossRefGoogle Scholar
  29. 29.
    van Lenthe E, Baerends E-J, Snijders JG (1994). J Chem Phys 101:9783–9792CrossRefGoogle Scholar
  30. 30.
    Chang C, Pélissier M, Durand P (1986). Phys Scr 34:394–404Google Scholar
  31. 31.
    Barysz M, Sadlej AJ (2002). J Chem Phys 116:2696–2704CrossRefGoogle Scholar
  32. 32.
    Heully JL, Lindgren I, Lindroth E, Lundquist S, Mårtensson-Pendrill AM (1986). J Phys B 19:2799–2815CrossRefGoogle Scholar
  33. 33.
    Kutzelnigg W (1997). Chem Phys 225:203–222CrossRefGoogle Scholar
  34. 34.
    Barysz M, Sadlej AJ, Snijders JG (1997). Int J Quant Chem 65:225–239CrossRefGoogle Scholar
  35. 35.
    Wolf A, Reiher M, Hess BA (2002). J Chem Phys 117:9215–9226CrossRefGoogle Scholar
  36. 36.
    Douglas M, Kroll NM (1974). Ann Phys 82:89–155CrossRefGoogle Scholar
  37. 37.
    Hess BA (1986). Phys Rev A 33:3742–3748CrossRefGoogle Scholar
  38. 38.
    Reiher M, Wolf A (2004). J Chem Phys 121:2037–2047CrossRefGoogle Scholar
  39. 39.
    Hess BA (1985). Phys Rev A 32:756–763CrossRefGoogle Scholar
  40. 40.
    Foldy LL, Wouthuysen SA (1950). Phys Rev 78:29–36CrossRefGoogle Scholar
  41. 41.
    Reiher M, Wolf A (2004). J Chem Phys 121:10945–10956CrossRefGoogle Scholar
  42. 42.
    Jansen G, Hess BA (1989). Phys Rev A 39:6016–6017CrossRefGoogle Scholar
  43. 43.
    Barysz M, Sadlej AJ (2001). J Mol Struct (Theochem) 573:181–200CrossRefGoogle Scholar
  44. 44.
    Nakajima T, Hirao K (2000). J Chem Phys 113:7786–7789CrossRefGoogle Scholar
  45. 45.
    van Wüllen C (2004). J Chem Phys 120:7307–7313CrossRefGoogle Scholar
  46. 46.
    Kutzelnigg W (1989). Z Phys D 11:15–28CrossRefGoogle Scholar
  47. 47.
    Kutzelnigg W (1990). Z Phys D 15:27–50CrossRefGoogle Scholar
  48. 48.
    Brummelhuis R, Siedentop H, Stockmeyer E (2002). Doc Math 7:167–182Google Scholar
  49. 49.
    Kedziera D, Barysz M (2004). Chem Phys Lett 393:521–527CrossRefGoogle Scholar
  50. 50.
    Kedziera D, Barysz M (2004). J Chem Phys 121:6719–6727CrossRefGoogle Scholar
  51. 51.
    van Wüllen C (2005). Chem Phys 311:105–112CrossRefGoogle Scholar
  52. 52.
    Wolf A, Reiher M, Hess BA (2004). J Chem Phys 120:8624–8631CrossRefGoogle Scholar
  53. 53.
    Neese F, Wolf A, Fleig T, Reiher M, Hess BA (2005). J Chem Phys 122:204107CrossRefGoogle Scholar
  54. 54.
    Samzow R, Hess BA (1991). Chem Phys Lett 184:491–495CrossRefGoogle Scholar
  55. 55.
    Samzow R, Hess BA, Jansen G (1992). J Chem Phys 96:1227–1231CrossRefGoogle Scholar
  56. 56.
    Hess BA, Marian CM, Wahlgren U, Gropen O (1996). Chem Phys Lett 251:365–371CrossRefGoogle Scholar
  57. 57.
    Boettger JC (2000). Phys Rev B 62:7809–7815CrossRefGoogle Scholar
  58. 58.
    Mayer M, Krüger S, Rösch N (2001). J Chem Phys 115:4411–4423CrossRefGoogle Scholar
  59. 59.
    Matveev A, Rösch N (2003). J Chem Phys 118:3997–4012CrossRefGoogle Scholar
  60. 60.
    Majumder S, Matveev AV, Rösch N (2003). Chem Phys Lett 382:186–193CrossRefGoogle Scholar
  61. 61.
    Nakajima T, Hirao K (2003). J Chem Phys 119:4105–4111CrossRefGoogle Scholar
  62. 62.
    Peralta JE, Scuseria GE (2004). J Chem Phys 120:5875–5881CrossRefGoogle Scholar
  63. 63.
    Nasluzov VA, Rösch N (1996). Chem Phys 210:413–425CrossRefGoogle Scholar
  64. 64.
    Kellö V, Sadlej AJ (1998). Int J Quant Chem 68:159–174CrossRefGoogle Scholar
  65. 65.
    Fukuda R, Hada M, Nakatsuji H (2002). J Chem Phys 118:1015–1026CrossRefGoogle Scholar
  66. 66.
    Fukuda R, Hada M, Nakatsuji H (2002). J Chem Phys 118:1027–1035CrossRefGoogle Scholar
  67. 67.
    Malkin I, Malkina OL, Malkin VG (2002). Chem Phys Lett 361:231–236CrossRefGoogle Scholar
  68. 68.
    Malkin I, Malkina OL, Malkin VG, Kaupp M (2004). Chem Phys Lett 396:268–276CrossRefGoogle Scholar
  69. 69.
    Nakajima T, Hirao K (2000). Chem Phys Lett 329:511–516CrossRefGoogle Scholar
  70. 70.
    Lee YS, McLean AD (1982). J Chem Phys 76:735–736CrossRefGoogle Scholar
  71. 71.
    Stanton RE, Havriliak S (1984). J Chem Phys 81:1910–1918CrossRefGoogle Scholar
  72. 72.
    Siedentop H, Stockmeyer E (2005). Phys Lett A 341: 473–478CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institut für Physikalische ChemieFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations