Advertisement

Theoretical Chemistry Accounts

, Volume 115, Issue 4, pp 227–245 | Cite as

Ab initio calculation of molecular chiroptical properties

  • T. Daniel. Crawford
Regular Article

Abstract

This review describes the first-principles calculation of chiroptical properties such as optical rotation, electronic and vibrational circular dichroism, and Raman optical activity. Recent years have witnessed a flurry of activity in this area, especially in the advancement of density-functional and coupled cluster methods, with two ultimate goals: the elucidation of the fundamental relationship between chiroptical properties and detailed molecular structure, and the development of a suite of computational tools for the assignment of the absolute configurations of chiral molecules. The underlying theory and the basic principles of such calculations are given for each property, and a number of representative applications are discussed.

Keywords

Chem Phys Vibrational Circular Dichroism Electronic Circular Dichroism Couple Cluster Theory Chiroptical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eliel EL, Wilen SH (1994). Stereochemistry of organic compounds. Wiley, New YorkGoogle Scholar
  2. Friedman L, Miller JG (1971). Science 172:1044PubMedGoogle Scholar
  3. Wnendt S, Zwingenberger K (1997). Nature 385:303CrossRefPubMedGoogle Scholar
  4. Lee TJ, Scuseria GE (1995) In: Langhoff SR. (ed). Quantum mechanical electronic structure calculations with chemical accuracy. Kluwer, Dordrecht, pp. 47–108Google Scholar
  5. Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic structure theory. Wiley, New YorkGoogle Scholar
  6. Helgaker T, Ruden TA, Jørgensen P, Olsen J, Klopper W (2004). J Phys Org Chem 17:913CrossRefGoogle Scholar
  7. Snatzke G (1979). Angew Chem Int Ed Engl 18:363CrossRefGoogle Scholar
  8. Rinderspacher BC, Schreiner PR (2004). J Phys Chem A 108:2867CrossRefGoogle Scholar
  9. Goddard WA (1985). Science 227:917Google Scholar
  10. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University, New YorkGoogle Scholar
  11. Bartlett RJ (1995) In: Yarkony DR (eds) Modern electronic structure theory, vol 2 of Advanced series in physical chemistry. World Scientific, Singapore, Chap16, pp. 1047–1131Google Scholar
  12. Crawford TD, Schaefer HF (2000) In: Lipkowitz KB, Boyd DB (eds) Reviews in Computational Chemistry, vol 14, Chap. 2. VCH Publishers, New York, pp 33–136Google Scholar
  13. Møller C, Plesset MS (1934). Phys Rev 46:618CrossRefGoogle Scholar
  14. Bartlett RJ (1981). Annu Rev Phys Chem 32:359CrossRefGoogle Scholar
  15. Becke AD (1993). J Chem Phys 98:5648CrossRefGoogle Scholar
  16. Lee C, Yang, Parr RG (1988). Phys Rev B 37:785CrossRefGoogle Scholar
  17. Pulay P (1983). Chem Phys Lett 100:151CrossRefGoogle Scholar
  18. Sæbø S, Pulay P (1993). Ann Rev Phys Chem 44:213CrossRefGoogle Scholar
  19. Hampel C, Werner H-J (1996). J Chem Phys 104:6286CrossRefGoogle Scholar
  20. Schütz M (2002). Phys Chem Chem Phys 4:3941CrossRefGoogle Scholar
  21. Russ NJ, Crawford TD (2004). Chem Phys Lett 400:104CrossRefGoogle Scholar
  22. Barron LD (2004) Molecular Light scattering and optical activity, 2nd edn. Cambridge University Press, CamridgeGoogle Scholar
  23. Caldwell DJ, Eyring H (1971) The theory of optical activity. Wiley, New YorkGoogle Scholar
  24. Charney E (1979) The molecular basis of optical activity: optical rotatory dispersion and circular dichroism. Wiley, New YorkGoogle Scholar
  25. Mason SF (1982) Molecular optical activity and the chiral discriminations. Cambridge University Press, CambridgeGoogle Scholar
  26. Polavarapu PL (2002). Chirality 14:768CrossRefPubMedGoogle Scholar
  27. Stephens RJ, Devlin FJ, Cheeseman JR, Drisch MJ, Bortolini O, Besse P (2003). Chirality 15:S57CrossRefPubMedGoogle Scholar
  28. Stephens PJ, McCann DM, Cheeseman JR, Frisch MJ (2005). Chirality 17:S52CrossRefPubMedGoogle Scholar
  29. Polavarapu PL (1998) Vibrational spectra: principles and applications with emphasis on optical activity, vol 85 of studies in physical and theoretical chemistry. Elsevier, AmsterdamGoogle Scholar
  30. Stephens PJ, Devlin FJ (2000). Chirality 12:172CrossRefPubMedGoogle Scholar
  31. Freedman TB, Cao X, Dukor RK, Nafie (2003). Chirality 15:743CrossRefPubMedGoogle Scholar
  32. Nafie LA (1997). Ann Rev Phys Chem 48:357CrossRefGoogle Scholar
  33. Barron LD, Hecht L, McColl IH, Blanch EW (2004). Mol Phys 102:731CrossRefGoogle Scholar
  34. Wagnière GH (1999). Chem Phys 245:165CrossRefGoogle Scholar
  35. Coriani S, Jørgensen P, Rizzo A, Ruud K, Olsen J (1999). Chem Phys Lett 300:61CrossRefGoogle Scholar
  36. Coriani S, Pecul M, Rizzo A, Jørgensen P, Jaszunski M (2002). J Chem Phys 117:6417CrossRefGoogle Scholar
  37. Rizzo A, Kallay M, Gauss J, FPawlowski, Jørgensen P, Hättig C (2004). J Chem Phys 121:9461CrossRefPubMedGoogle Scholar
  38. Ekstrom U, Norman P, Rizzo A (2005). J Chem Phys 122:074321CrossRefPubMedGoogle Scholar
  39. Kirkwood J, Albrecht AC, Fischer P, Buckingham AD (2002) In: Hicks J (ed) Chirality: physical chemistry, vol 810 of ACS symposium series Chap. 10. Oxford University Press, Oxford, pp 130–144Google Scholar
  40. Stephens PJ (1970). J Chem Phys 52:3489CrossRefGoogle Scholar
  41. Stephens PJ (1976). Adv Chem Phys 35:197Google Scholar
  42. Buckingham AD (2004). Chem Phys Lett 398:1CrossRefGoogle Scholar
  43. Rosenfeld L (1928). Z Physik 52:161CrossRefGoogle Scholar
  44. Jørgensen P, Simons J (1981) Second quantization-based methods in quantum chemistry. Academic, New YorkGoogle Scholar
  45. Linderberg J, öhrn Y (2004) Propagators in quantum chemistry, 2nd edn. Wiley, New JerseyGoogle Scholar
  46. Rowe DJ (1968). Rev Mod Phys 40:153CrossRefGoogle Scholar
  47. Casida ME (1995) In: Chong DP (ed) Recent advances in density functional methods, vol 1. World Scientific, SingaporeGoogle Scholar
  48. Bauernschmitt R, Ahlrichs R (1996). Chem Phys Lett 256:454CrossRefGoogle Scholar
  49. Grimme S (2001). Chem Phys Lett 339:380CrossRefGoogle Scholar
  50. Ruud K, Helgaker T (2002). Chem Phys Lett 352:533CrossRefGoogle Scholar
  51. Furche F (2001). J Chem Phys 114:5982CrossRefGoogle Scholar
  52. Autschbach J, Patchkovskii S, Ziegler T, van Gisbergen S, Baerends EJ (2002). J Chem Phys 117:581CrossRefGoogle Scholar
  53. Polavarapu PL (1997). Mol Phys 91:551CrossRefGoogle Scholar
  54. Amos RD (1982). Chem Phys Lett 87:23CrossRefGoogle Scholar
  55. Cheeseman JR, Frisch MJ, Devlin FJ, Stephens PJ (2000). J Phys Chem A 104:1039CrossRefGoogle Scholar
  56. Stephens PJ, Devlin FJ, Cheeseman JR, Frisch MJ (2001). J Phys Chem A 105:5356CrossRefGoogle Scholar
  57. Amos RD, Alberts IL, Andrews JS, Colwell SM, Handy NC, Jayatilaka D, Knowles PJ, Kobayashi R, Laidig KE, Laming G, Lee AM, Maslen PE, Murray CW, Rice JE, Simandiras ED, Stone AJ, Su M-D, Tozer DJ (1995) CADPAC: The Cambridge Analytic Derivatives Package Issue 6, Cambridge. A suite of quantum chemistry programsGoogle Scholar
  58. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) GAUSSIAN-03. Gaussian, Inc., PittsburgGoogle Scholar
  59. Ahlrichs R, Bärand M, Baron H-P, Bauernschmitt R, Böcker S, Deglmann P, Ehrig M, Eichkorn K, Elliott S, Furche F, Haase F, Häser M, Horn H, Hättig C, Huber C, Huniar U, Kattannek M, Köhn A, Kölmel C, Kollwitz M, May K, Ochsenfeld C, Ohm H, Patzelt H, Rubner O, Schäfer A, Schneider U, Sierka M, Treutler O, Unterreiner B, von Arnim M, Weigend F, Weis P, Weiss H (2002) Turbomole v5.6Google Scholar
  60. Crawford TD, Sherrill CD, Valeev EF, Fermann JT, King RA, Leininger ML, Brown ST, Janssen CL, Seidl ET, Kenny JP, Allen WD (2003) PSI 3.2Google Scholar
  61. DALTON, a molecular electronic structure program, Release 2.0 (2005) see http://www.kjemi.uio.no/software/dalton/dalton.htmlGoogle Scholar
  62. Amsterdam Density Functional program, Theoretical Chemistry, Vrije Universiteit, Amsterdam, http://www.scm.comGoogle Scholar
  63. Grimme S, Furche F, Ahlrichs R (2002). Chem Phys Lett 361:321CrossRefGoogle Scholar
  64. Koch H, Jørgensen P (1990). J Chem Phys 93:3333CrossRefGoogle Scholar
  65. Christiansen O, Jørgensen P, Hättig C (1998). Int J Quantum Chem 68:1CrossRefGoogle Scholar
  66. Pedersen TB, Koch K (1997). J Chem Phys 106:8059CrossRefGoogle Scholar
  67. Ruud K, Stephens PJ, Devlin FJ, Taylor PR, Cheeseman JR, Frisch MJ (2003). Chem Phys Lett 373:606CrossRefGoogle Scholar
  68. Helgaker T, Jensen HJAa, Jørgensen P, Olsen J, Ruud K, Ågren H, Auer AA, Bak KL, Bakken V, Christiansen O, Coriani S, Dahle P, Dalskov EK, Enevoldsen T, Fernandez B, Hättig C, Hald K, Halkier A, Heiberg H, Hettema H, Jonsson D, Kirpekar S, Kobayashi R, Koch H, Mikkelsen KV, Norman P, Packer MJ, Pedersen TB, Ruden TA, Sanchez A, Saue T, Sauer SPA, Schimmelpfennig B, Sylvester-Hvid KO, Taylor PR, Vahtras O (2005) Dalton, a molecular electronic structure program, Release 2.0Google Scholar
  69. Tam MC, Russ NJ, Crawford TD (2004). J Chem Phys 121:3550CrossRefPubMedGoogle Scholar
  70. Crawford TD, Owens LS, Tam MC, Schreiner PR, Koch H (2005). J Am Chem Soc 127:1368CrossRefPubMedGoogle Scholar
  71. Kongsted J, Pedersen TB, Strange M, Osted A, Hansen AE, Mikkelsen KV, Pawlowski F, Jørgensen P, Hättig C (2005). Chem Phys Lett 401:385CrossRefGoogle Scholar
  72. Koch H, Christiansen O, Jørgensen P, Olsen J (1995). Chem Phys Lett 244:75CrossRefGoogle Scholar
  73. Pedersen TB, Koch H, Hättig C (1999). J Chem Phys 110:8318CrossRefGoogle Scholar
  74. London F (1937). J Phys Radium 8:397Google Scholar
  75. Helgaker T, Jørgensen P (1991). J Chem Phys 95:2595CrossRefGoogle Scholar
  76. Ditchfield R (1974). Mol Phys 27:789Google Scholar
  77. Wolinski K, Hinton JF, Pulay P (1990). J Am Chem Soc 112:8251CrossRefGoogle Scholar
  78. Gauss J, Stanton JF (1995). J Chem Phys 103:3561CrossRefGoogle Scholar
  79. Bak KL, Hansen AE, Ruud K, Heglaker T, Olsen J, Jørgensen P (1995). Theor Chim Acta 90:441Google Scholar
  80. Helgaker T, Ruud K, Bak KL, Jørgensen P, Olsen J (1994). Faraday Discuss 99:165CrossRefGoogle Scholar
  81. The lack of equivalence between the length- and velocity-gauge representations of the Rosenfeld tensor for truncated coupled cluster models arises because of the lack of variational optimization of the underlying molecular orbitals, and, thus the same problem will arise for perturbation theory and multireference configuration interaction models. This problem has been addressed by Pedersen and Koch, who, in Ref. [73], developed a gauge-invariant form of coupled cluster theory through the optimized coupled cluster (OCC) approachGoogle Scholar
  82. Pedersen TB, Koch H, Boman L, de Meras AMJS (2004). Chem Phys Lett 393:319CrossRefGoogle Scholar
  83. Polavarapu PL, Chakraborty DK (1998). J Am Chem Soc 120:6160CrossRefGoogle Scholar
  84. Polavarapu PL, Chakraborty DK (1999). Chem Phys 240:1CrossRefGoogle Scholar
  85. Kondru RK, Wipf P, Beratan DN (1998). J Am Chem Soc 120:2204CrossRefGoogle Scholar
  86. Perry TL, Dickerson A, Kahn AA, Kondru RK, Beratan DN, Wipf P, Kelly M, Hamann MT (2001). Tetrahedron 57:1483CrossRefGoogle Scholar
  87. Ribe S, Kondru RK, Beratan DN, Wipf P (2000). J Am Chem Soc 122:4608CrossRefGoogle Scholar
  88. Goldsmith M-R, Jayasuriya N, Beratan DN, Wipf P (2003). J Am Chem Soc 125:15696CrossRefPubMedGoogle Scholar
  89. Kondru RK, Wipf P, Beratan DN (1998). Science 282:2247CrossRefPubMedGoogle Scholar
  90. Stephens PJ, Devlin FJ, Cheeseman JR, Frisch MJ, Rosini C (2002). Org Lett 4:4595CrossRefPubMedGoogle Scholar
  91. Polavarapu PL (2002). Angew Chem Int Ed 41:4544CrossRefGoogle Scholar
  92. Hecht L, Costante J, Polavarapu PL, Collet A, Barron LD (1997). Angew Chem Int Ed 36:885CrossRefGoogle Scholar
  93. Schreiner PR, Fokin AA, Lauenstein O, Okamoto Y, Wakita T, Rinderspacher C, Robinson GH, Vohs JK, Campana CF (2002). J Am Chem Soc 124:13348CrossRefPubMedGoogle Scholar
  94. Giorgio E, Viglione RG, Zanasi R, Rosini C (2004). J Am Chem Soc 126:12968PubMedGoogle Scholar
  95. Norman P, Ruud K, Helgaker T (2004). J Chem Phys 120:5027CrossRefPubMedGoogle Scholar
  96. Wiberg KB, Vaccaro PH, Cheeseman JR (2003). J Am Chem Soc 125:1888CrossRefPubMedGoogle Scholar
  97. Wiberg KB, Wang YG, Vaccaro PH, Cheeseman JR, Trucks G, Frisch MJ (2004). J Phys Chem A 108:32CrossRefGoogle Scholar
  98. Wiberg KB, Wang Y-G, Vaccaro PH, Cheeseman JR, Luderer MR (2005). J Phys Chem A 109:3405CrossRefGoogle Scholar
  99. Kumata Y, Furukawa J, Fueno T (1970). Bull Chem Soc Japan 43:3920Google Scholar
  100. Mennucci B, Tomasi J, Cammi R, Cheeseman JR, Frisch MJ, Devlin FJ, Gabriel S, Stephens PJ (2002). J Phys Chem A 106:6102CrossRefGoogle Scholar
  101. Christiansen O, Koch H, Jørgensen P (1998). Chem Phys Lett 243:409CrossRefGoogle Scholar
  102. de Meijere A, Khlebnikov AF, Kostikov RR, Kozhushkov SI, Schreiner PR, Wittkopp A, Yufit DS (1999). Angew Chem Int Ed 38:3474CrossRefGoogle Scholar
  103. de Meijere A, Khlebnikov AF, Kostikov RR, Kozhushkov SI, Schreiner PR, Wittkopp A, Rinderspacher C, Menzel H, Yufit DS, Howard JAK (2002). Chem Eur J 8:828CrossRefGoogle Scholar
  104. Koch H, de Merás AMJS, Pedersen TB (2003). J Chem Phys 118:9481CrossRefGoogle Scholar
  105. Pedersen TB, de Merás AMJS, Koch H (2004). J Chem Phys 120:8887CrossRefPubMedGoogle Scholar
  106. Müller T, Wiberg KB, Vaccaro PH (2000). J Phys Chem A 104:5959CrossRefGoogle Scholar
  107. Müller T, Wiberg KB, Vaccaro PH, Cheeseman JR, Frisch MJ (2002). J Opt Soc Am B 19:125CrossRefGoogle Scholar
  108. Giorgio E, Rosini C, Viglione RG, Zanasi R (2003). Chem Phys Lett 376:452CrossRefGoogle Scholar
  109. Ruud K, Zanasi R (2005). Angew Chem Int Ed Engl 44:3594CrossRefPubMedGoogle Scholar
  110. Ruud K, Taylor PR, Åstrand P-O (2001). Chem Phys Lett 337:217CrossRefGoogle Scholar
  111. Hansen AE, Bouman TD (1980). Adv Chem Phys 44:545Google Scholar
  112. Rauk A (1998) In: Schleyer PVR (ed) Encyclopedia of computational chemistry. Wiley, New YorkGoogle Scholar
  113. Foresman JB, Head-Gordon M, Pople JA, Frisch MJ (1992). J Phys Chem 96:135CrossRefGoogle Scholar
  114. Tamm I (1945). J Phys USSR 9:449Google Scholar
  115. Dancoff SM (1950). Phys Rev 78:382CrossRefGoogle Scholar
  116. Pople JA (1953). Trans Faraday Soc 49:1375CrossRefGoogle Scholar
  117. Del Bene JE, Ditchfield R, Pople JA (1971). J Chem Phys 55:2236CrossRefGoogle Scholar
  118. Grimme S, Harren J, Sobanski A, Vögtle F (1998). Eur J Org Chem 1491Google Scholar
  119. Stanton JF, Gauss J, Ishikawa N, Head-Gordon M (1995). J Chem Phys 103:4160CrossRefGoogle Scholar
  120. Tozer DJ, Amos RD, Handy NC, Roos BO, Serrano-Andrés L (1999). Mol Phys 97:859CrossRefGoogle Scholar
  121. Dreuw A, Weisman JL, Head-Gordon M (2003). J Chem Phys 119:2943CrossRefGoogle Scholar
  122. Tozer DJ, Handy NC (2000). Phys Chem Chem Phys 2:2117CrossRefGoogle Scholar
  123. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998). J Chem Phys 109:6264CrossRefGoogle Scholar
  124. Burcl R, Amos RD, Handy NC (2002). Chem Phys Lett 355:8CrossRefGoogle Scholar
  125. Pecul M, Ruud K, Helgaker T (2004). Chem Phys Lett 388:110CrossRefGoogle Scholar
  126. Rauk A (1984). J Am Chem Soc 106:6517CrossRefGoogle Scholar
  127. Hansen AE, Bouman TD (1985). J Am Chem Soc 107:4828CrossRefGoogle Scholar
  128. Carnell M, Peyerimhoff SD, Breest A, Godderz KH, Ochmann P, Hormes J (1991). Chem Phys Lett 180:477CrossRefGoogle Scholar
  129. Grimme S, Peyerimhoff SD, Bartram S, Vögtle F, Breest A, Hormes J (1993). Chem Phys Lett 213:32CrossRefGoogle Scholar
  130. Carnell M, Grimme S, Peyerimhoff SD (1994). Chem Phys 179:385CrossRefGoogle Scholar
  131. Carnell M, Peyerimhoff SD (1994). Chem Phys 183:37CrossRefGoogle Scholar
  132. Grimme S (1996). Chem Phys Lett 259:128CrossRefGoogle Scholar
  133. Pulm F, Schramm J, Hormes J, Grimme S, Peyerimhoff SD (1997). Chem Phys 224:143CrossRefGoogle Scholar
  134. Furche F, Ahlrichs R, Wachsmann C, Weber E, Sobanski A, Vögtle F, Grimme S (2000). J Am Chem Soc 122:1717CrossRefGoogle Scholar
  135. Autschbach J, Ziegler T, van Gisbergen SJA, Baerends EJ (2002). J Chem Phys 116:6930CrossRefGoogle Scholar
  136. Autschbach J, Jorge FE, Ziegler T (2003). Inorg Chem 42:2867CrossRefPubMedGoogle Scholar
  137. Neugebauer J, Baerends EJ, Nooijen M, Autschbach J (2005). J Chem Phys 122:234305CrossRefPubMedGoogle Scholar
  138. Pecul M, Marchesan D, Ruud K, Coriani S (2005). J Chem Phys 122:024106CrossRefPubMedGoogle Scholar
  139. Diedrich C, Grimme S (2003). J Phys Chem A 107:2524CrossRefGoogle Scholar
  140. Waletzke M, Grimme S (2000). Phys Chem Chem Phys 2:2075Google Scholar
  141. Grimme S, Waletzke M (1999). J Chem Phys 111:5645CrossRefGoogle Scholar
  142. Stephens PJ, McCann DM, Devlin FJ, Cheeseman JR, Frisch MJ (2004). J Am Chem Soc 126:7514CrossRefPubMedGoogle Scholar
  143. Stephens PJ, McCann DM, Butkus E, Stoncius S, Cheeseman JR, Frisch MJ (2004). J Org Chem 69:1948CrossRefPubMedGoogle Scholar
  144. Stanton JF, Bartlett RJ (1993). J Chem Phys 98:7029CrossRefGoogle Scholar
  145. Christiansen O, Halkier A, Koch H, Jørgensen P, Helgaker T (1998). J Chem Phys 108:2801CrossRefGoogle Scholar
  146. Pedersen TB, Koch H, Ruud K (1999). J Chem Phys 110:2883CrossRefGoogle Scholar
  147. Pedersen TB, Hansen AE (1995). Chem Phys Lett 246:1CrossRefGoogle Scholar
  148. Pedersen TB, Koch H (2000). J Chem Phys 112:2139CrossRefGoogle Scholar
  149. Yamaguchi Y, Osamura Y, Goddard JD, Schaefer HF (1994) A new dimension to quantum chemistry: analytic derivative methods in ab initio molecular electronic structure theory, No. 29 in international series of monographs on chemistry. Oxford University Press, New YorkGoogle Scholar
  150. Wilson EB, Decius JC, Cross PC (1980) Molecular vibrational: the theory of infrared and raman vibrational spectra. Dover, New YorkGoogle Scholar
  151. Barron LD, Buckingham AD (2001). Acc Chem Res 34:781CrossRefPubMedGoogle Scholar
  152. Stephens PJ (1985). J Phys Chem 89:748CrossRefGoogle Scholar
  153. Buckingham AD, Fowler PW, Galwas PA (1987). Chem Phys 112:1CrossRefGoogle Scholar
  154. Buckingham AD (1994). Faraday Discuss 99:1CrossRefGoogle Scholar
  155. Stephens PJ (1987). J Phys Chem 91:1712CrossRefGoogle Scholar
  156. Stevens RM, Pitzer RM, Lipscomb WN (1963). J Chem Phys 38:550CrossRefGoogle Scholar
  157. Koch H, Jensen HJAa, Jørgensen P, Helgaker T, Scuseria GE, Schaefer HF (1990). J Chem Phys 92:4924CrossRefGoogle Scholar
  158. Gauss J, Stanton JF (1997). Chem Phys Lett 276:70CrossRefGoogle Scholar
  159. Stanton JF, Gauss J (1997) In: Bartlett RJ (ed) Recent advances in coupled-cluster methods. World Scientific Publishing, Singapore, pp 49–79Google Scholar
  160. Gauss J, Stanton JF (1995). J Chem Phys 103:3561CrossRefGoogle Scholar
  161. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989). Chem Phys Lett 157:479CrossRefGoogle Scholar
  162. Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990). Chem. Phys. Lett. 165:513 erratum: 167:609Google Scholar
  163. Noga J, Bartlett RJ, Urban M (1987). Chem Phys Lett 134:126CrossRefGoogle Scholar
  164. Lowe MA, Segal GA, Stephens PJ (1986). J Am Chem Soc 108:248CrossRefGoogle Scholar
  165. Lowe MA, Stephens PJ, Segal GA (1986). Chem Phys Lett 123:108CrossRefGoogle Scholar
  166. Amos RD, Handy NC, Jalkanen KJ, Stephens PJ (1987). Chem Phys Lett 133:21CrossRefGoogle Scholar
  167. Morokuma K, Sugeta H (1987). Chem Phys Lett 134:23CrossRefGoogle Scholar
  168. Amos RD, Handy NC, Palmieri P (1990). J Chem Phys 93:5796CrossRefGoogle Scholar
  169. Stephens PJ, Jalkanene KJ, Devlin FJ, Chabalowski CF (1993). J Phys Chem 97:6107CrossRefGoogle Scholar
  170. Stephens PJ, Chabalowski CF, Devlin FJ, Jalkanen KJ (1994). Chem Phys Lett 225:247CrossRefGoogle Scholar
  171. Amos RD, Jalkanen KJ, Stephens PJ (1988). J Phys Chem 92:5571CrossRefGoogle Scholar
  172. Yang DY, Rauk A (1992). J Chem Phys 97:6517CrossRefGoogle Scholar
  173. Bak KL, Jørgensen P, Helgaker T, Ruud K, Jensen HJAa (1993). J Chem Phys 98:8873CrossRefGoogle Scholar
  174. Bak KL, Jørgensen P, Helgaker T, Ruud K (1994). Faraday Discuss 99:121CrossRefGoogle Scholar
  175. Stephens PJ, Devlin FJ, Ashvar CS, Chabalowski CF, Frisch MJ (1994). Faraday Discuss 99:103CrossRefGoogle Scholar
  176. Cheeseman JR, Frisch MJ, Devlin FJ, Stephens PJ (1996). Chem Phys Lett 252:211CrossRefGoogle Scholar
  177. Bak KL, Bludský O, Jørgensen P (1995). J Chem Phys 103:10548CrossRefGoogle Scholar
  178. Cappelli C, Corni S, Mennucci B, Cammi R, Tomasi J (2002). J Phys Chem A 106:12331CrossRefGoogle Scholar
  179. He J, Petrovich A, Polavarapu PL (2004). J Phys Chem A 108:1671CrossRefGoogle Scholar
  180. He J, Petrovic AG, Polavarapu PL (2004). J Phys Chem A 108:20451Google Scholar
  181. Blanch EW, Hecht L, Syme CD, Volpetti V, Lomonossoff G, Nielsen K, Barron LD (2002). J Gen Virology 83:2593Google Scholar
  182. Blanch EW, McColl IH, Hecht L, Nielsen K, Barron LD (2004). Vib Spectrosc 35:87CrossRefGoogle Scholar
  183. Barron LD, Buckingham AD (1971). Mol Phys 20:1111Google Scholar
  184. Vibrational ROA CIDs are defined as the difference in scattering intensity of right and left circularly polarized light, arbitrarily opposite to that of VCD and ECD, which make use of rotatory strengths as a difference in left and right circularly polarized light absorptionGoogle Scholar
  185. Barron LD, Borgaard MP, Buckingham AD (1973). J Am Chem Soc 95:603CrossRefGoogle Scholar
  186. Placzek G (1934) In: Marx E (ed) Handbuch der Radiologie. Akademische, Leipzig, No. 2, p 205Google Scholar
  187. Quinet O, Champagne B, Kirtman B (2001). J Comp Chem 22:1920CrossRefGoogle Scholar
  188. Jayatilaka D, Maslen PE, Amos RD, Handy NC (1992). Mol Phys 75:271Google Scholar
  189. Bose PK, Barron LD, Polavarapu PL (1989). Chem Phys Lett 155:423CrossRefGoogle Scholar
  190. Bose PK, Polavarapu PL, Barron LD, Hecht L (1990). J Phys Chem 94:1734CrossRefGoogle Scholar
  191. Polavarapu PL (1990). J Phys Chem 94:8106CrossRefGoogle Scholar
  192. Polavarapu PL (1993). J Phys Chem 97:1793CrossRefGoogle Scholar
  193. Pecul M, Rizzo A (2003). Mol Phys 101:2073CrossRefGoogle Scholar
  194. Dunning TH (1989). J Chem Phys 90:1007CrossRefGoogle Scholar
  195. Kendall RA, Dunning TH, Harrison RJ (1992). J Chem Phys 96:6796CrossRefGoogle Scholar
  196. Woon DE, Dunning TH (1994). J Chem Phys 100:2975CrossRefGoogle Scholar
  197. Zuber G, Hug W (2004). J Phys Chem A 108:2108CrossRefGoogle Scholar
  198. Hehre WJ, Ditchfield R, Pople JA (1972). J Chem Phys 56:2257CrossRefGoogle Scholar
  199. Hariharan PC, Pople JA (1973). Theor Chim Acta 28:213CrossRefGoogle Scholar
  200. Bouř P (1998). Chem Phys Lett 288:363CrossRefGoogle Scholar
  201. Bouř P (2001). J Comp Chem 22:426CrossRefGoogle Scholar
  202. Ruud K, Helgaker T, Bouř P (2002). J Phys Chem A 106:7448CrossRefGoogle Scholar
  203. Bouř P, Kapitán J, Baumruk V (2001). J Phys Chem A 105:6362CrossRefGoogle Scholar
  204. Jalkanen KJ, Nieminen RM, Frimand K, Bohr J, Bohr H, Wade RC, Tajkhorshid E, Suhai S (2001). Chem Phys 265:125CrossRefGoogle Scholar
  205. Bouř P, Sychrovský V, Maloň P, Hanzlíková J, Baumruk V, Pospíšek J, Buděšínský M (2002). J Phys Chem A 106:7321CrossRefGoogle Scholar
  206. Pecul M, Rizzo A, Leszczynski J (2002). J Phys Chem A 106:11008CrossRefGoogle Scholar
  207. Hug W (2001). Chem Phys 264:53CrossRefGoogle Scholar
  208. Hug W, Zuber G, de Meijere A, Khlebnikov AE, Hansen H-J (2001). Helv Chim Acta 84:1CrossRefGoogle Scholar
  209. Zuber G, Hug W (2004). Helv Chim Acta 87:2208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of ChemistryVirginia TechBlacksburgUSA

Personalised recommendations