, Volume 129, Issue 2, pp 99–111 | Cite as

Endogenous opioid systems and alcohol addiction



 Alcohol exerts numerous pharmacological effects through its interaction with various neurotransmitters and neuromodulators. Among the latter, the endogenous opioids play a key role in the rewarding (addictive) properties of ethanol. Three types of opioid receptors (μ, δ and κ) represent the respective targets of the major opioid peptides (β-endorphin, enkephalins and dynorphins, respectively). The rewarding (reinforcing) properties of μ- and δ-receptor ligands are brought about by activation of the mesolimbic dopamine system which ascends from the ventral tegmentum of the midbrain (VTA) to rostral structures; of these, the nucleus accumbens (NAC) is of particular importance in drug addiction. In contrast, dysphoria results from activation of κ-receptors. The neurochemical manifestations of these opposing effects are, respectively, increases and decreases in dopamine release in the NAC. Several lines of evidence indicate that alcohol interferes with endogenous opioid mechanisms which are closely linked with dopamine transmission in the mesolimbic pathway. The view that condensation products of dopamine and alcohol-derived aldehyde (tetrahydroisoquinolines) play a role remains controversial. There is, however, much information on the direct (acute and chronic) effects of alcohol on the binding properties of opioid receptors, as well as modulation of opioid peptide synthesis and secretion (e.g. a suggested increase in β-endorphin release). In view of the reinforcing properties of alcohol, it is relevant to consider behavioural studies involving alcohol self-administration in rodents and primates. Low doses of morphine have been found to increase, and higher doses of the opiate to decrease, alcohol consumption. Conversely, opioid antagonists such as naloxone and naltrexone (which bind to non-selectively opioid receptors) have been shown to decrease alcohol consumption under various experimental conditions. Similar results have been reported when selective μ- or δ-receptor antagonists are administered. Results obtained in genetic models of high preference for alcohol also support the view that alcohol intake depends on the activity of the endogenous opioid reward system and that alcohol consumption may serve to compensate for inherent deficits in this system. One hypothetical model proposes that reward results from activation of μ-opioid receptors in the VTA and/or δ-receptors in the NAC; both these nuclei are targets of endogenous β-endorphin. It is suggested that alcohol interferes with this reward pathway either directly or indirectly. The available experimental data accord well with those obtained from clinical studies in which opioid antagonists have been used to prevent relapse in alcoholics. Conceptual considerations concerning communalities between various forms of addictions are also discussed in this review.

Key words Alcohol addiction Opioid addiction Opioid receptors Endogenous opioid peptides Mesolimbic dopamine reward system Alcohol reinforcement Alcohol self-administration Genetic models Opioid antagonists Naloxone Naltrexone Prevention of relapse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • A. Herz
    • 1
  1. 1.Department of Neuropharmacology, Max-Planck-Institute for Psychiatry, Am Klopferspitz 18a, D-82152 Planegg-Martinsried, Germany FAX (+ 49) 89/8578-3777DE

Personalised recommendations