Advertisement

Psychopharmacology

, Volume 236, Issue 12, pp 3613–3623 | Cite as

Differential disruption of conditioned ejaculatory preference in the male rat based on different sensory modalities by micro-infusions of naloxone to the medial preoptic area or ventral tegmental area

  • Gonzalo R. Quintana
  • Morgan Birrel
  • Sarah Marceau
  • Narges Kalantari
  • James Bowden
  • Yvonne Bachoura
  • Eric Borduas
  • Valerie Lemay
  • Jason W. Payne
  • Conall Mac Cionnaith
  • James G. PfausEmail author
Original Investigation

Abstract

Rationale

Male rats trained to associate a neutral odor or rodent jacket on a female with their post-ejaculatory reward state display a preference to ejaculate with females bearing the odor or jacket. This conditioned ejaculatory preference (CEP) can be shifted by systemic administration of the opioid antagonist naloxone (NAL) during training, such that NAL-trained males distribute their ejaculations to females without the cue, relative to saline (SAL)-trained males.

Objective

The present study examined two brain sites, the medial preoptic area (mPOA) or ventral tegmental area (VTA), where the opioid reward state might be induced.

Methods

Sexually naïve Long-Evans males were implanted with bilateral guide cannula aimed at either site before they underwent multi-ejaculatory conditioning trials at 4-day intervals with sexually receptive females that bore either an almond odor or rodent tethering jacket. Infusions of NAL (1 μl/side) or SAL (1 μl/side) were made prior to each conditioning trial. All males were infused with SAL prior to a final open-field choice test with two sexually receptive females, one scented and the other unscented, or one jacketed and the other unjacketed.

Results

Males previously conditioned with SAL in either region showed significant CEP. In contrast, prior infusions of NAL to the mPOA shifted the preference towards the unfamiliar female, whereas prior infusions to the VTA abolished CEP for the odor. Subsequent detection of Fos protein induced by the cue showed that, relative to SAL-treated males, prior experience with NAL in the mPOA suppressed Fos in both the mPOA and VTA, whereas prior experience with NAL in to the VTA suppressed Fos in the VTA alone.

Conclusions

Opioid antagonism in the mPOA produces a state of non-reward whereas in the VTA, it produces a state in which the odor does not acquire incentive properties.

Keywords

Conditioned ejaculatory preference Opioid mPOA VTA 

Notes

Funding

This research was funded by a grant from the Canadian Institutes for Health Research (MOP-74563) to JGP, a graduate studentship from the Consejo Nacional de Ciencia y Tecnología de Chile to GRQ, and an infrastructure grant from Fonds de la Reserche en Santé du Québec to the Center for Studies in Behavioral Neurobiology at Concordia University.

Compliance with ethical standards

The authors declare that all animal procedures conformed to the guidelines of the Canadian Council for Animal Care. All procedures were approved by the Concordia University Animal Research Ethics Committee.

Conflict of interest

The authors declare they have no conflicts of interest.

References

  1. Ågmo A, Berenfeld R (1990) Reinforcing properties of ejaculation in the male rat: role of opioids and dopamine. Behav Neurosci 104:177–182PubMedCrossRefGoogle Scholar
  2. Ågmo A, Gómez M (1993) Sexual reinforcement is blocked by infusion of naloxone into the medial preoptic area. Behav Neurosci 107:812–818PubMedCrossRefGoogle Scholar
  3. Arletti R, Calza L, Giardino L, Benelli A, Cavazzuti E, Bertolini A (1997) Sexual impotence is associated with a reduced production of oxytocin and with an increased production of opioid peptides in the paraventricular nucleus of male rats. Neurosci Lett 233:65–68PubMedCrossRefPubMedCentralGoogle Scholar
  4. Balfour ME, Yu L, Coolen LM (2004) Sexual behavior and sex-associated environmental cues activate the mesolimbic system in male rats. Neuropsychopharmacol 29:718–730CrossRefGoogle Scholar
  5. Balfour ME, Brown JL, Yu L, Coolen LM (2006) Potential contributions of efferents from medial prefrontal cortex to neural activation following sexual behavior in the male rat. Neuroscience 137:1259–1276PubMedCrossRefPubMedCentralGoogle Scholar
  6. Balthazart J, Ball GF (2007) Topography in the preoptic region: differential regulation of appetitive and consummatory male sexual behaviors. Front Neuroendocrinol 28(4):161–178PubMedPubMedCentralCrossRefGoogle Scholar
  7. Band LC, Hull EM (1990) Morphine and dynorphin (1-13) microinjected into the medial preoptic area and nucleus accumbens: effects on sexual behavior in male rats. Brain Res 524:77–84PubMedCrossRefPubMedCentralGoogle Scholar
  8. Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacol 191:391–431CrossRefGoogle Scholar
  9. Blackburn JR, Pfaus JG, Phillips AG (1992) Dopamine functions in appetitive and defensive behaviors. Prog Neurobiol 39:247–279PubMedCrossRefPubMedCentralGoogle Scholar
  10. Brackett NL, Iuvone PM, Edwards DA (1986) Midbrain lesions, dopamine and male sexual behavior. Behav Brain Res 20:231–240PubMedCrossRefPubMedCentralGoogle Scholar
  11. Coolen LM, Fitzgerald ME, Yu L, Lehman MN (2004) Activation of μ-opioid receptors in the medial preoptic area following copulation in male rats. Neuroscience 124:11–24PubMedCrossRefPubMedCentralGoogle Scholar
  12. Coria-Avila GA, Pfaus JG (2007) Neuronal activation by stimuli that predict sexual reward in female rats. Neuroscience 148:623–632PubMedCrossRefPubMedCentralGoogle Scholar
  13. Edwards DA, Einhorn LC (1986) Preoptic and midbrain control of sexual motivation. Physiol Behav 37:329–335PubMedCrossRefPubMedCentralGoogle Scholar
  14. Fibiger HC, Phillips AG (1988) Mesocorticolimbic dopamine systems and reward. Ann N Y Acad Sci 537:206–215PubMedCrossRefPubMedCentralGoogle Scholar
  15. Fields HL, Margolis EB (2015) Understanding opioid reward. Trends Neurosci 38:217–225PubMedPubMedCentralCrossRefGoogle Scholar
  16. Fiorino DF, Phillips AG (1999a) Facilitation of sexual behavior in male rats following d-amphetamine-induced behavioral sensitization. Psychopharmacol 142:200–208CrossRefGoogle Scholar
  17. Fiorino DF, Phillips AG (1999b) Facilitation of sexual behavior and enhanced dopamine efflux in the nucleus accumbens of male rats after d-amphetamine-induced behavioral sensitization. J Neurosci 19:456–463PubMedPubMedCentralCrossRefGoogle Scholar
  18. Garduño-Gutiérrez R, León-Olea M, Rodríguez-Manzo G (2013) Different amounts of ejaculatory activity, a natural rewarding behavior, induce differential mu and delta opioid receptor internalization in the rat's ventral tegmental area. Brain Res 1541:22–32PubMedCrossRefPubMedCentralGoogle Scholar
  19. Georgiadis JR, Kringelbach ML, Pfaus JG (2012) Sex for fun: a synthesis of human and animal neurobiology. Nat Rev Urol 9:486–498PubMedCrossRefPubMedCentralGoogle Scholar
  20. Graham MD, Payne JW, Germé K, Pfaus JG (in press) Steroid hormones modulate dopamine receptor subtypes on glutamate and GABA neurons in the medial preoptic area of female rats that project to the ventromedial hypothalamus and ventral tegmental area: a triple-labelling study. Eur J NeurosciGoogle Scholar
  21. Halloway KS (2012) Opioid mediation of learned sexual behavior. Socioaffect Neurosci Psychol 2:14874CrossRefGoogle Scholar
  22. Hasenöhrl RU, Gerhardt P, Huston JP (1991) Naloxone blocks conditioned place preference induced by substance P and [pGlu6]-SP(6-11). Regul Pept 35:177–187PubMedCrossRefPubMedCentralGoogle Scholar
  23. Hughes AM, Everitt BJ, Herbert J (1987) Selective effects of beta-endorphin infused into the hypothalamus, preoptic area and bed nucleus of the stria terminalis on the sexual and ingestive behaviour of male rats. Neuroscience 23:1063–1073PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hughes AM, Everitt BJ, Herbert J (1990) Comparative effects of preoptic area infusion of opioid peptides, lesions and castration on sexual behaviour in male rats: studies of instrumental behavior, conditioned place preference and partner preference. Psychopharmacol 102:243–256CrossRefGoogle Scholar
  25. Hull EM, Rodriguez-Manzo G (2009) Male sexual behavior. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (eds) Hormones, brain and behavior, vol 1, 2nd edn. Academic Press, San Diego, pp 5–65CrossRefGoogle Scholar
  26. Hull EM, Wood RI, McKenna K (2006) The neurobiology of male sexual behavior. In: Neill JD (ed) Knobil and Neill’s physiology of reproduction, 3rd Ed., vol. 2, ch. 33. Academic Press, San Diego, pp 1729–1842CrossRefGoogle Scholar
  27. Institute for the Laboratory Animal Research (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies Press, Washington (DC)Google Scholar
  28. Ismail N, Girard-Bériault F, Nakanishi S, Pfaus JG (2009) Naloxone, but not flupenthixol, disrupts the development of conditioned ejaculatory preference in the male rat. Behav Neurosci 123:992–999PubMedCrossRefPubMedCentralGoogle Scholar
  29. Kallo I, Molnár CS, Szöke S, Fekete C, Hrabovszky E, Liposits Z (2015) Area-specific analysis of the distribution of hypothalamic neurons projecting to the rat ventral tegmental area, with special reference to the GABAergic and glutamatergic efferents. Front Neuroanat 9:112PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kelm-Nelson CA, Stevenson SA, Cordesi MA, Riters LV (2013) Modulation of male song by naloxone in the medial preoptic nucleus. Behav Neurosci 127(3):451–457PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kippin TE, Pfaus JG (2001) The development of olfactory conditioned ejaculatory preferences in the male rat I. Nature of the unconditioned stimulus. Behav Brain Res 73:457–469Google Scholar
  32. Kippin TE, Talianakis S, Schattmann L, Bartholomew S, Pfaus JG (1998) Olfactory conditioning of sexual behavior and mate selection in the male rat. J Comp Psychol 112:389–399CrossRefGoogle Scholar
  33. Kippin TE, Cain SW, Pfaus JG (2003) Estrous odors and sexually-conditioned neutral odors activate independent neural pathways in the male rat. Neuroscience 117:971–979PubMedCrossRefPubMedCentralGoogle Scholar
  34. Le Moal M, Simon H (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 71:155–234PubMedCrossRefPubMedCentralGoogle Scholar
  35. Lett BT, Grant VL, Koh MT (2001) Naloxone attenuates the conditioned place preference induced by wheel running in rats. Physiol Behav 72355–358.Google Scholar
  36. Lyilikci O, Balthazart J, Ball GF (2017) Medial preoptic regulation of the ventral tegmental area related to the control of sociosexual behaviors. eNeuro 3:1–12Google Scholar
  37. Mansour A, Khachaturian H, Lewis ME, Akil H, Watson ST (1988) Anatomy of CNS opioid receptors. Trend Neurosci 11(7):308–309PubMedCrossRefPubMedCentralGoogle Scholar
  38. Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H, Watson ST (1994) Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 350:412–438PubMedCrossRefPubMedCentralGoogle Scholar
  39. Matuszewich L, Dornan WA (1992) Bilateral injections of a selective μ-receptor agonist (morphiceptin) into the medial preoptic nucleus produces a marked delay in the initiation of sexual behavior in the male rat. Psychopharmacology (Berl) 106:391–396CrossRefGoogle Scholar
  40. Matuszewich L, Ormsby JL, Moses J, Lorrain DS, Hull EM (1995) Effects of morphiceptin in the medial preoptic area on male sexual behavior. Psychopharmacology (Berl) 122:330–335CrossRefGoogle Scholar
  41. Mehrara BJ, Baum MJ (1990) Naloxone disrupts the expression but not the acquisition by male rats of a conditioned place preference response for an oestrous female. Psychopharmacology (Berl) 101:118–125.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Micevych PE, Meisel RL (2017) Integrating neural circuits controlling female sexual behavior. Front Syst Neurosci 11:42PubMedPubMedCentralCrossRefGoogle Scholar
  43. Miller RL, Baum MJ (1987) Naloxone inhibits mating and conditioned place preference for an estrus female in male rats soon after castration. Pharmacol Biochem Behav 26:781–789PubMedCrossRefPubMedCentralGoogle Scholar
  44. Miranda-Paiva CM, Ribeiro-Barbosa ER, Canteras NS, Felicio LF (2003) A role for the periaqueductal grey in opioidergic inhibition of maternal behaviour. Eur J Neurosci 18:667–674PubMedCrossRefPubMedCentralGoogle Scholar
  45. Mitchell JB, Stewart J (1990) Facilitation of sexual behaviors in the male rat associated with intra-VTA injections of opiates. Pharmacol Biochem Behav 35:643–650PubMedCrossRefPubMedCentralGoogle Scholar
  46. Paredes RG (2014) Opioids and sexual reward. Pharmacol Biochem Behav 121:124–131PubMedCrossRefPubMedCentralGoogle Scholar
  47. Parker LA, Rennie M (1992) Naltrexone-induced aversions: assessment by place conditioning, taste reactivity, and taste avoidance paradigms. Pharmacol Biochem Behav 41:559–565PubMedCrossRefPubMedCentralGoogle Scholar
  48. Pfaus JG (2009) Pathways of sexual desire. J Sex Med 6:1506–1533PubMedCrossRefPubMedCentralGoogle Scholar
  49. Pfaus JG, Gorzalka BB (1987) Opioids and sexual behavior. Neurosci Biobehav Rev 11:1–34PubMedCrossRefPubMedCentralGoogle Scholar
  50. Pfaus JG, Smith WJ, Coopersmith CB (1999) Appetitive and consummatory sexual behaviors of female rats in bilevel chambers: I. A correlational and factor analysis and the effects of ovarian hormones. Horm Behav 35(3):224–240PubMedCrossRefPubMedCentralGoogle Scholar
  51. Pfaus JG, Kippin TE, Coria-Avila GA, Gelez H, Afonso VM, Ismail N, Parada M (2012) Who, what, where, when (and maybe even why)? How the experience of sexual reward connects sexual desire, preference, and performance. Arch Sex Behav 41:31–62PubMedCrossRefPubMedCentralGoogle Scholar
  52. Pfaus JG, Jones SL, Flanagan-Cato LM, Blaustein JD (2014) Female sexual behavior Knobil and Neill’s Physiology of reproduction: two-volume set. 2:2287–2370CrossRefGoogle Scholar
  53. Pfaus JG, Scardochio T, Parada M, Gerson C, Quintana GR, Coria-Avila GA (2016) Do rats have orgasms? Socioaffect Neurosci Psychol 6:31883PubMedCrossRefPubMedCentralGoogle Scholar
  54. Quintana GR, Desbiens S, Marceau S, Kalantari N, Bowden J, Pfaus JG (2019a) Conditioned partner preference by male and female rats for a somatosensory cue. Behav Neurosci 133(2):188–197PubMedCrossRefPubMedCentralGoogle Scholar
  55. Quintana GR, González B, Borduas E, Lemay V, Yarur Y, Pfaus JG (2019b) Naloxone disrupts the development of a conditioned ejaculatory preference based on a somatosensory cue in male rats. Behav Neurosci 133(2):199–202Google Scholar
  56. Rodríguez-Manzo G, Asai M, Fernández-Guasti A (2002) Evidence for changes in brain enkephalin contents associated to male rat sexual activity. Behav Brain Res 131:47–55PubMedCrossRefPubMedCentralGoogle Scholar
  57. Simerly RB, McCall LD, Watson SJ (1988) Distribution of opioid peptides in the preoptic region: immunohistochemical evidence for a steroid-sensitive enkephalin sexual dimorphism. J Comp Neurol 276:442–459PubMedCrossRefPubMedCentralGoogle Scholar
  58. Spyraki C, Kazandjian A, Varonos D (1985) Diazepam-induced place preference conditioning: appetitive and antiaversive properties. Psychopharmacology (Berl) 87:225–232PubMedCrossRefPubMedCentralGoogle Scholar
  59. Szechtman H, Simantov M, Hershkowitz R (1981) Sexual behavior decreases pain sensitivity and stimulates endogenous opioids in male rats. Eur J Pharmacol 70:279–285PubMedCrossRefPubMedCentralGoogle Scholar
  60. Tenk CM, Wilson H, Zhang Q, Pitchers KK, Coolen LM (2009) Sexual reward in male rats: effects of sexual experience on conditioned place preferences associated with ejaculation and intromissions. Horm Behav 55:93–97PubMedCrossRefPubMedCentralGoogle Scholar
  61. Tobiansky DJ, Roma PG, Hattori T, Will RG, Nutsch VL, Dominguez JM (2013) The medial preoptic area modulates cocaine-induced activity in female rats. Behav Neurosci 127:293–302PubMedPubMedCentralCrossRefGoogle Scholar
  62. Tobiansky DJ, Will RG, Lominac KD, Tuner JM, Hattori T, Krishnan K, Martz JR, Nutsch VL, Dominguez JM (2016) Estradiol in the preoptic area regulates the dopaminergic response to cocaine in the nucleus accumbens. Neuropsychopharmacology 41(7):1897–1906PubMedPubMedCentralCrossRefGoogle Scholar
  63. Trujillo KA, Belluzzi JD, Stein L (1991) Naloxone blockade of amphetamine place preference conditioning. Psychopharmacology (Berl) 104:265–274PubMedCrossRefPubMedCentralGoogle Scholar
  64. van Furth WR, van Ree JM (1996) Sexual motivation: involvement of endogenous opioids in the ventral tegmental area. Brain Res 729:20–28PubMedCrossRefPubMedCentralGoogle Scholar
  65. van Furth WR, van Emst MG, van Ree JM (1995a) Opioids and sexual behavior of male rats: involvement of the medial preoptic area. Behav Neurosci 109:123–134PubMedCrossRefPubMedCentralGoogle Scholar
  66. van Furth WR, Wolterink L, van Ree JM (1995b) Regulation of masculine sexual behavior: involvement of brain opioids and dopamine. Brain Res Rev 21:162–184PubMedCrossRefPubMedCentralGoogle Scholar
  67. van Ree JM, Niesink RJM, von Wolfswinkel L, Ramsey NF, Kornet MMW, van Furth WR et al (2000) Endogenous opioids and reward. Eur J Pharmacol 405:89–101PubMedCrossRefPubMedCentralGoogle Scholar
  68. Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74:858–873PubMedCrossRefPubMedCentralGoogle Scholar
  69. Will RG, Martz JR, Dominguez JM (2016) The medial preoptic area modulates cocaine-induced locomotion in male rats. Behav Brain Res 305:218–222PubMedPubMedCentralCrossRefGoogle Scholar
  70. Wise RA (2005) Forebrain substrates of reward and motivation. J Comp Neurol 493:115–121PubMedPubMedCentralCrossRefGoogle Scholar
  71. Wise RA (2009) Roles for nigrostriatal—not just mesocorticolimbic—dopamine in reward and addiction. Tren Neurosci 32:517–524CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gonzalo R. Quintana
    • 1
  • Morgan Birrel
    • 1
  • Sarah Marceau
    • 1
  • Narges Kalantari
    • 1
  • James Bowden
    • 1
  • Yvonne Bachoura
    • 1
  • Eric Borduas
    • 1
  • Valerie Lemay
    • 1
  • Jason W. Payne
    • 1
  • Conall Mac Cionnaith
    • 1
  • James G. Pfaus
    • 1
    • 2
    Email author
  1. 1.Centre for Studies in Behavioral Neurobiology, Department of PsychologyConcordia UniversityMontréalCanada
  2. 2.Centro de Investigaciones CerebralesUniversidad VeracruzanaXalapaMexico

Personalised recommendations