Advertisement

Psychopharmacology

, Volume 236, Issue 9, pp 2747–2759 | Cite as

Moral decision making under modafinil: a randomized placebo-controlled double-blind crossover fMRI study

  • Thao Ngo
  • Marta Ghio
  • Lars Kuchinke
  • Patrik Roser
  • Christian BellebaumEmail author
Original Investigation

Abstract

Rationale

Modafinil is increasingly used by healthy humans as a neuroenhancer in order to improve cognitive functioning. Research on the effects of modafinil on cognition yielded most consistent findings for complex tasks relying on the prefrontal cortex (PFC).

Objectives

The present randomized placebo-controlled double-blind crossover study aimed to investigate the effect of a single dose of modafinil (200 mg) on everyday moral decision making and its neural correlates, which have been linked to the ventro- and dorsomedial PFC.

Methods

Healthy male study participants were presented with short stories describing everyday moral or neutral dilemmas. Each moral dilemma required a decision between a personal desire and a moral standard, while the neutral dilemmas required decisions between two personal desires. The participants underwent this task twice, once under the influence of modafinil and once under placebo. Brain activity associated with the processing of the dilemmas was assessed by means of functional magnetic resonance imaging.

Results

For the processing of moral vs. neutral dilemmas, activations were found in a network of brain regions linked to social cognitive processes including, among others, the bilateral medial PFC, the insula, and the precuneus. Modafinil was found to increase the number of moral decisions and had no effect on brain activity associated with dilemma processing. Exploratory analyses revealed reduced response-locked activity in the dorsomedial PFC for moral compared to neutral dilemmas under modafinil, but not under placebo.

Conclusions

The results are discussed in terms of altered predictions of others’ emotional states under modafinil, possibly due to higher processing efficiency.

Keywords

Moral reasoning Decision making Modafinil Prefrontal cortex fMRI 

Notes

Funding information

We would like to thank the Mercator Foundation for financial support.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Akintomide GS, Rickards H (2011) Narcolepsy: a review. Neuropsychiatr Dis Treat 7:507–518.  https://doi.org/10.2147/NDT.S23624 CrossRefPubMedGoogle Scholar
  2. Aron AR (2007) The neural basis of inhibition in cognitive control. Neuroscientist 13:214–228.  https://doi.org/10.1177/1073858407299288 CrossRefPubMedGoogle Scholar
  3. Battleday RM, Brem A-K (2015) Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects: a systematic review. Eur Neuropsychopharmacol 25:1865–1881.  https://doi.org/10.1016/j.euroneuro.2015.07.028 CrossRefPubMedGoogle Scholar
  4. Becker PM, Schwartz JRL, Feldman NT, Hughes RJ (2004) Effect of modafinil on fatigue, mood, and health-related quality of life in patients with narcolepsy. Psychopharmacology 171:133–139.  https://doi.org/10.1007/s00213-003-1508-9 CrossRefPubMedGoogle Scholar
  5. Bellebaum C, Kuchinke L, Roser P (2017) Modafinil alters decision making based on feedback history—a randomized placebo-controlled double blind study in humans. J Psychopharmacol 31:243–249.  https://doi.org/10.1177/0269881116668591
  6. Bernhardt BC, Singer T (2012) The neural basis of empathy. Annu Rev Neurosci 35:1–23.  https://doi.org/10.1146/annurev-neuro-062111-150536 CrossRefPubMedGoogle Scholar
  7. Bhanji JP, Beer JS, Bunge SA (2010) Taking a gamble or playing by the rules: dissociable prefrontal systems implicated in probabilistic versus deterministic rule-based decisions. Neuroimage 49:1810–1819.  https://doi.org/10.1016/j.neuroimage.2009.09.030 CrossRefPubMedGoogle Scholar
  8. Bond AJ, Lader MH (1974) The use of analogue scales in rating subjective feelings. Br J Med Psychol 47:211–218.  https://doi.org/10.1111/j.2044-8341.1974.tb02285.x CrossRefGoogle Scholar
  9. Bzdok D, Schilbach L, Vogeley K, Schneider K, Laird AR, Langner R, Eickhoff SB (2012) Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Struct Funct 217:783–796.  https://doi.org/10.1007/s00429-012-0380-y CrossRefPubMedGoogle Scholar
  10. Cabanis M, Pyka M, Mehl S, Müller BW, Loos-Jankowiak S, Winterer G, Wölwer W, Musso F, Klingberg S, Rapp AM, Langohr K, Wiedemann G, Herrlich J, Walter H, Wagner M, Schnell K, Vogeley K, Kockler H, Shah NJ, Stöcker T, Thienel R, Pauly K, Krug A, Kircher T (2013) The precuneus and the insula in self-attributional processes. Cogn Affect Behav Neurosci 13:330–345.  https://doi.org/10.3758/s13415-012-0143-5 CrossRefPubMedGoogle Scholar
  11. Decety J, Lamm C (2007) The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition. Neuroscientist 13:580–593.  https://doi.org/10.1177/1073858407304654 CrossRefPubMedGoogle Scholar
  12. Dietz P, Striegel H, Franke AG, Lieb K, Simon P, Ulrich R (2013) Randomized response estimates for the 12-month prevalence of cognitive-enhancing drug use in university students. Pharmacotherapy 33:44–50.  https://doi.org/10.1002/phar.1166 CrossRefPubMedGoogle Scholar
  13. Esposito R, Cilli F, Pieramico V, Ferretti A, Macchia A, Tommasi M, Saggino A, Ciavardelli D, Manna A, Navarra R, Cieri F, Stuppia L, Tartaro A, Sensi SL (2013) Acute effects of modafinil on brain resting state networks in young healthy subjects. PLoS One 8:e69224.  https://doi.org/10.1371/journal.pone.0069224 CrossRefPubMedGoogle Scholar
  14. Ethofer T, Bretscher J, Wiethoff S, Bisch J, Schlipf S, Wildgruber D, Kreifelts B (2013) Functional responses and structural connections of cortical areas for processing faces and voices in the superior temporal sulcus. Neuroimage 76:45–56.  https://doi.org/10.1016/j.neuroimage.2013.02.064 CrossRefPubMedGoogle Scholar
  15. Fernández A, Mascayano F, Lips W, Painel A, Norambuena J, Madrid E (2015) Effects of modafinil on attention performance, short-term memory and executive function in university students: a randomized trial. Medwave 15:e6166.  https://doi.org/10.5867/medwave.2015.05.6166 CrossRefPubMedGoogle Scholar
  16. Franke AG, Bonertz C, Christmann M, Huss M, Fellgiebel A, Hildt E, Lieb K (2011) Non-medical use of prescription stimulants and illicit use of stimulants for cognitive enhancement in pupils and students in Germany. Pharmacopsychiatry 44:60–66.  https://doi.org/10.1055/s-0030-1268417 CrossRefPubMedGoogle Scholar
  17. Franke AG, Bagusat C, Dietz P, Hoffmann I, Simon P, Ulrich R, Lieb K (2013) Use of illicit and prescription drugs for cognitive or mood enhancement among surgeons. BMC Med 11:102.  https://doi.org/10.1186/1741-7015-11-102 CrossRefPubMedGoogle Scholar
  18. Franke AG, Bagusat C, Rust S, Engel A, Lieb K (2014) Substances used and prevalence rates of pharmacological cognitive enhancement among healthy subjects. Eur Arch Psychiatry Clin Neurosci 264(Suppl 1):90–90.  https://doi.org/10.1007/s00406-014-0537-1 Google Scholar
  19. Funayama T, Ikeda Y, Tateno A, Takahashi H, Okubo Y, Fukayama H, Suzuki H (2014) Modafinil augments brain activation associated with reward anticipation in the nucleus accumbens. Psychopharmacology 231:3217–3228.  https://doi.org/10.1007/s00213-014-3499-0 CrossRefPubMedGoogle Scholar
  20. Garrigan B, Adlam ALR, Langdon PE (2016) The neural correlates of moral decision-making: a systematic review and meta-analysis of moral evaluations and response decision judgements. Brain Cogn 108:88–97.  https://doi.org/10.1016/j.bandc.2016.07.007 CrossRefPubMedGoogle Scholar
  21. Ghio M, Vaghi MMS, Perani D, Tettamanti M (2016) Decoding the neural representation of fine-grained conceptual categories. Neuroimage 132:93–103.  https://doi.org/10.1016/j.neuroimage.2016.02.009 CrossRefPubMedGoogle Scholar
  22. Greene JD (2007) Why are VMPFC patients more utilitarian? A dual-process theory of moral judgment explains. Trends Cogn Sci 11:322–323; author reply 323-4.  https://doi.org/10.1016/j.tics.2007.06.004
  23. Greene JD, Nystrom LE, Engell AD, Darley JM, Cohen JD (2004) The neural bases of cognitive conflict and control in moral judgment. Neuron 44:389–400.  https://doi.org/10.1016/j.neuron.2004.09.027 CrossRefPubMedGoogle Scholar
  24. Greene JD, Sommerville RB, Nystrom LE, Darley JM, Cohen JD (2001) An fMRI investigation of emotional engagement in moral judgment. Science 293:2105–2108.  https://doi.org/10.1126/science.1062872 CrossRefPubMedGoogle Scholar
  25. Kim W, Tateno A, Arakawa R, Sakayori T, Ikeda Y, Suzuki H, Okubo Y (2014) In vivo activity of modafinil on dopamine transporter measured with positron emission tomography and 18FFE-PE2I. Int J Neuropsychopharmacol 17:697–703.  https://doi.org/10.1017/S1461145713001612 CrossRefPubMedGoogle Scholar
  26. Kulendran M, Borovoi L, Purkayastha S, Darzi A, Vlaev I (2017) Impulsivity predicts weight loss after obesity surgery. Surg Obes Relat Dis 13:1033–1040.  https://doi.org/10.1016/j.soard.2016.12.031 CrossRefPubMedGoogle Scholar
  27. Madras BK, Xie Z, Lin Z, Jassen A, Panas H, Lynch L, Johnson R, Livni E, Spencer TJ, Bonab AA, Miller GM, Fischman AJ (2006) Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro. J Pharmacol Exp Ther 319:561–569.  https://doi.org/10.1124/jpet.106.106583 CrossRefPubMedGoogle Scholar
  28. Maher B (2008) Poll results: look who’s doping. Nature 452:674–675.  https://doi.org/10.1038/452674a CrossRefPubMedGoogle Scholar
  29. Marchant NL, Kamel F, Echlin K, Grice J, Lewis M, Rusted JM (2009) Modafinil improves rapid shifts of attention. Psychopharmacology 202:487–495.  https://doi.org/10.1007/s00213-008-1395-1 CrossRefPubMedGoogle Scholar
  30. Minzenberg MJ, Watrous AJ, Yoon JH, Ursu S, Carter CS (2008) Modafinil shifts human locus coeruleus to low-tonic, high-phasic activity during functional MRI. Science 322:1700–1702.  https://doi.org/10.1126/science.1164908 CrossRefPubMedGoogle Scholar
  31. Minzenberg MJ, Yoon JH, Carter CS (2011) Modafinil modulation of the default mode network. Psychopharmacology 215:23–31.  https://doi.org/10.1007/s00213-010-2111-5 CrossRefPubMedGoogle Scholar
  32. Mitchell JP, Macrae CN, Banaji MR (2004) Encoding-specific effects of social cognition on the neural correlates of subsequent memory. J Neurosci 24:4912–4917.  https://doi.org/10.1523/JNEUROSCI.0481-04.2004 CrossRefPubMedGoogle Scholar
  33. Mitchell JP, Macrae CN, Banaji MR (2006) Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron 50:655–663.  https://doi.org/10.1016/j.neuron.2006.03.040 CrossRefPubMedGoogle Scholar
  34. Moll J, de Oliveira-Souza R (2007) Moral judgments, emotions and the utilitarian brain. Trends Cogn Sci 11:319–321.  https://doi.org/10.1016/j.tics.2007.06.001
  35. Müller U, Rowe JB, Rittman T, Lewis C, Robbins TW, Sahakian BJ (2013) Effects of modafinil on non-verbal cognition, task enjoyment and creative thinking in healthy volunteers. Neuropharmacology 64:490–495.  https://doi.org/10.1016/j.neuropharm.2012.07.009 CrossRefPubMedGoogle Scholar
  36. Müller U, Steffenhagen N, Regenthal R, Bublak P (2004) Effects of modafinil on working memory processes in humans. Psychopharmacology 177:161–169.  https://doi.org/10.1007/s00213-004-1926-3 CrossRefPubMedGoogle Scholar
  37. Murillo-Rodríguez E, Barciela Veras A, Barbosa Rocha N, Budde H, Machado S (2018) An overview of the clinical uses, pharmacology, and safety of modafinil. ACS Chem Neurosci 9:151–158.  https://doi.org/10.1021/acschemneuro.7b00374 CrossRefPubMedGoogle Scholar
  38. Ott T, Nieder A (2019) Dopamine and cognitive control in prefrontal cortex. Trends Cogn Sci 23:213–234.  https://doi.org/10.1016/j.tics.2018.12.006
  39. Pelphrey KA, Singerman JD, Allison T, McCarthy G (2003) Brain activation evoked by perception of gaze shifts: the influence of context. Neuropsychologia 41:156–170CrossRefPubMedGoogle Scholar
  40. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142–2154.  https://doi.org/10.1016/j.neuroimage.2011.10.018 CrossRefPubMedGoogle Scholar
  41. Qu W-M, Huang Z-L, Xu X-H, Matsumoto N, Urade Y (2008) Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J Neurosci 28:8462–8469.  https://doi.org/10.1523/JNEUROSCI.1819-08.2008 CrossRefPubMedGoogle Scholar
  42. Raichle ME (2015) The brain’s default mode network. Annu Rev Neurosci 38:433–447.  https://doi.org/10.1146/annurev-neuro-071013-014030 CrossRefPubMedGoogle Scholar
  43. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682.  https://doi.org/10.1073/pnas.98.2.676 CrossRefPubMedGoogle Scholar
  44. Randall DC, Fleck NL, Shneerson JM, File SE (2004) The cognitive-enhancing properties of modafinil are limited in non-sleep-deprived middle-aged volunteers. Pharmacol Biochem Behav 77:547–555.  https://doi.org/10.1016/j.pbb.2003.12.016 CrossRefPubMedGoogle Scholar
  45. Randall DC, Shneerson JM, File SE (2005a) Cognitive effects of modafinil in student volunteers may depend on IQ. Pharmacol Biochem Behav 82:133–139.  https://doi.org/10.1016/j.pbb.2005.07.019 CrossRefPubMedGoogle Scholar
  46. Randall DC, Shneerson JM, Plaha KK, File SE (2003) Modafinil affects mood, but not cognitive function, in healthy young volunteers. Hum Psychopharmacol 18:163–173.  https://doi.org/10.1002/hup.456 CrossRefPubMedGoogle Scholar
  47. Randall DC, Viswanath A, Bharania P, Elsabagh SM, Hartley DE, Shneerson JM, File SE (2005b) Does modafinil enhance cognitive performance in young volunteers who are not sleep-deprived? J Clin Psychopharmacol 25:175–179CrossRefPubMedGoogle Scholar
  48. Rasetti R, Mattay VS, Stankevich B, Skjei K, Blasi G, Sambataro F, Arrillaga-Romany IC, Goldberg TE, Callicott JH, Apud JA, Weinberger DR (2010) Modulatory effects of modafinil on neural circuits regulating emotion and cognition. Neuropsychopharmacology 35:2101–2109.  https://doi.org/10.1038/npp.2010.83 CrossRefPubMedGoogle Scholar
  49. Reniers RLEP, Corcoran R, Völlm BA, Mashru A, Howard R, Liddle PF (2012) Moral decision-making, ToM, empathy and the default mode network. Biol Psychol 90:202–210.  https://doi.org/10.1016/j.biopsycho.2012.03.009 CrossRefPubMedGoogle Scholar
  50. Repantis D, Schlattmann P, Laisney O, Heuser I (2010) Modafinil and methylphenidate for neuroenhancement in healthy individuals: a systematic review. Pharmacol Res 62:187–206.  https://doi.org/10.1016/j.phrs.2010.04.002 CrossRefPubMedGoogle Scholar
  51. Schaich Borg J, Sinnott-Armstrong W, Calhoun VD, Kiehl KA (2011) Neural basis of moral verdict and moral deliberation. Soc Neurosci 6:398–413.  https://doi.org/10.1080/17470919.2011.559363 CrossRefPubMedGoogle Scholar
  52. Schultz W (2016) Dopamine reward prediction-error signalling: a two-component response. Nat Rev Neurosci 17:183–195.  https://doi.org/10.1038/nrn.2015.26 CrossRefPubMedGoogle Scholar
  53. Sevinc G, Spreng RN (2014) Contextual and perceptual brain processes underlying moral cognition: a quantitative meta-analysis of moral reasoning and moral emotions. PLoS One 9:e87427.  https://doi.org/10.1371/journal.pone.0087427 CrossRefPubMedGoogle Scholar
  54. Shamay-Tsoory SG (2011) The neural bases for empathy. Neuroscientist 17:18–24.  https://doi.org/10.1177/1073858410379268 CrossRefPubMedGoogle Scholar
  55. Shiner T, Seymour B, Wunderlich K, Hill C, Bhatia KP, Dayan P, Dolan RJ (2012) Dopamine and performance in a reinforcement learning task: evidence from Parkinson’s disease. Brain 135:1871–1883.  https://doi.org/10.1093/brain/aws083 CrossRefPubMedGoogle Scholar
  56. Siegel JS, Power JD, Dubis JW, Vogel AC, Church JA, Schlaggar BL, Petersen SE (2014) Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points. Hum Brain Mapp 35:1981–1996.  https://doi.org/10.1002/hbm.22307 CrossRefPubMedGoogle Scholar
  57. Sommer M, Rothmayr C, Döhnel K, Meinhardt J, Schwerdtner J, Sodian B, Hajak G (2010) How should I decide? The neural correlates of everyday moral reasoning. Neuropsychologia 48:2018–2026.  https://doi.org/10.1016/j.neuropsychologia.2010.03.023 CrossRefPubMedGoogle Scholar
  58. Teter CJ, McCabe SE, LaGrange K, Cranford JA, Boyd CJ (2006) Illicit use of specific prescription stimulants among college students: prevalence, motives, and routes of administration. Pharmacotherapy 26:1501–1510.  https://doi.org/10.1592/phco.26.10.1501 CrossRefPubMedGoogle Scholar
  59. Tobler PN, Kalis A, Kalenscher T (2008) The role of moral utility in decision making: an interdisciplinary framework. Cogn Affect Behav Neurosci 8:390–401.  https://doi.org/10.3758/CABN.8.4.390 CrossRefPubMedGoogle Scholar
  60. Turner DC, Robbins TW, Clark L, Aron AR, Dowson J, Sahakian BJ (2003) Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology 165:260–269.  https://doi.org/10.1007/s00213-002-1250-8 CrossRefPubMedGoogle Scholar
  61. van Overwalle F (2009) Social cognition and the brain: a meta-analysis. Hum Brain Mapp 30:829–858.  https://doi.org/10.1002/hbm.20547 CrossRefPubMedGoogle Scholar
  62. Vogelsang DA, D’Esposito M (2018) Is there evidence for a rostral-caudal gradient in fronto-striatal loops and what role does dopamine play? Front Neurosci 12:242.  https://doi.org/10.3389/fnins.2018.00242 CrossRefPubMedGoogle Scholar
  63. Volkow ND, Fowler JS, Logan J, Alexoff D, Zhu W, Telang F, Wang G-J, Jayne M, Hooker JM, Wong C, Hubbard B, Carter P, Warner D, King P, Shea C, Xu Y, Muench L, Apelskog-Torres K (2009) Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. JAMA 301:1148–1154.  https://doi.org/10.1001/jama.2009.351 CrossRefPubMedGoogle Scholar
  64. Watson R, Latinus M, Charest I, Crabbe F, Belin P (2014) People-selectivity, audiovisual integration and heteromodality in the superior temporal sulcus. Cortex 50:125–136.  https://doi.org/10.1016/j.cortex.2013.07.011 CrossRefPubMedGoogle Scholar
  65. Winder-Rhodes SE, Chamberlain SR, Idris MI, Robbins TW, Sahakian BJ, Müller U (2010) Effects of modafinil and prazosin on cognitive and physiological functions in healthy volunteers. J Psychopharmacol 24:1649–1657.  https://doi.org/10.1177/0269881109105899 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological Psychology, Institute for Experimental PsychologyHeinrich Heine UniversityDüsseldorfGermany
  2. 2.Methods and EvaluationInternational Psychoanalytic University BerlinBerlinGermany
  3. 3.Department of Psychiatry and Psychotherapy, LWL University HospitalRuhr-University BochumBochumGermany
  4. 4.Department of Addictive DisordersPsychiatric Services Aargau AGBruggSwitzerland

Personalised recommendations