Advertisement

Psychopharmacology

, Volume 236, Issue 10, pp 2975–2982 | Cite as

Lipocalin-2 is dispensable in inflammation-induced sickness and depression-like behavior

  • Elisabeth G. VichayaEmail author
  • Phillip S. Gross
  • Darlene J. Estrada
  • Steve W. Cole
  • Aaron J. Grossberg
  • Scott E. Evans
  • Michael J. Tuvim
  • Burton F. Dickey
  • Robert Dantzer
Original Investigation

Abstract

Rationale

While the relationship between inflammation and depression is well-established, the molecular mechanisms mediating this relationship remain unclear. RNA sequencing analysis comparing brains of vehicle- and lipopolysaccharide-treated mice revealed LCN2 among the most dysregulated genes. As LCN2 is known to be an important regulator of the immune response to bacterial infection, we investigated its role in the behavioral response to lipopolysaccharide.

Objective

To explore the role of LCN2 in modulating behavior following lipopolysaccharide administration using wild type (WT) and lcn2−/− mice.

Methods

Using a within-subjects design, mice were treated with 0.33 mg/kg liposaccharide (LPS) and vehicle. Primary outcome measures included body weight, food consumption, voluntary wheel running, sucrose preference, and the tail suspension test. To evaluate the inflammatory response, 1 week later, mice were re-administered either vehicle or LPS and terminated at 6 h.

Results

While lcn2−/− mice had increased baseline food consumption and body weight, they showed a pattern of reduced food consumption and weight loss similar to WT mice in response to LPS. WT and lcn2−/− mice both recovered voluntary activity on the fourth day following LPS. LPS induced equivalent reductions in sucrose preference and TST immobility in the WT and lcn2−/− mice. Finally, there were no significant effects of genotype on inflammatory markers.

Conclusions

Our data demonstrate that lcn2 is dispensable for sterile inflammation-induced sickness and depression-like behavior. Specifically, lcn2−/− mice displayed sickness and immobility in the tail suspension test comparable to that of WT mice both in terms of intensity and duration.

Keywords

Lipocalin-2 Inflammation Lipopolysaccharide Innate immunity Depression Sickness behavior 

Notes

Funding information

This research was supported by the National Institutes of Health (R01 CA193522 and R21 MH104694 to R.D., R01 NS073939 to A.K., R.D., and C.J.H., and an MD Anderson Cancer Center Support Grant (P30 CA016672)).

Compliance with ethical standards

All protocols were approved by the University of Texas MD Anderson Cancer Center Institutional Animal Care and Use Committee.

Conflict of interest

Robert Dantzer has received honoraria from Danone Nutricia Research and Pfizer that are unrelated to the present study. All remaining authors declare no competing interests.

References

  1. Biver F, Goldman S, Delvenne V, Luxen A, De Maertelaer V, Hubain P, Mendlewicz J, Lotstra F (1994) Frontal and parietal metabolic disturbances in unipolar depression. Biol Psychiatry 36:381–388CrossRefGoogle Scholar
  2. Can A, Dao DT, Terrillion CE, Piantadosi SC, Bhat S, Gould TD (2012) The tail suspension test. J Vis Exp (59):e3769.  https://doi.org/10.3791/3769(2012)
  3. Castagne V, Moser P, Roux S, Porsolt RD (2011) Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci Chapter 8:Unit 8.10APubMedGoogle Scholar
  4. Cleaver JO, You D, Michaud DR, Guzmán Pruneda FA, Leiva Juarez MM, Zhang J, Weill PM, Adachi R, Gong L, Moghaddam S, Poynter ME, Tuvim MJ, Evans SE (2014) Lung epithelial cells are essential effectors of inducible resistance to pneumonia. Mucosal Immunol 7:78–88.  https://doi.org/10.1038/mi.2013.26 CrossRefPubMedGoogle Scholar
  5. Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22:319–349CrossRefGoogle Scholar
  6. Dantzer R, Konsman JP, Bluthe RM, Kelley KW (2000) Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton Neurosci 85:60–65CrossRefGoogle Scholar
  7. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctot KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457CrossRefGoogle Scholar
  9. Dunn AJ, Wang J, Ando T (1999) Effects of cytokines on cerebral neurotransmission. Comparison with the effects of stress. Adv Exp Med Biol 461:117–127CrossRefGoogle Scholar
  10. Dwarkasing JT, Marks DL, Witkamp RF, van Norren K (2016) Hypothalamic inflammation and food intake regulation during chronic illness. Peptides 77:60–66CrossRefGoogle Scholar
  11. Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR (2010) Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry 68:748–754CrossRefPubMedPubMedCentralGoogle Scholar
  12. Frenois F, Moreau M, O’Connor J, Lawson M, Micon C, Lestage J, Kelley KW, Dantzer R, Castanon N (2007) Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology 32:516–531CrossRefPubMedPubMedCentralGoogle Scholar
  13. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043CrossRefGoogle Scholar
  14. Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21:1696–1709CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gouweleeuw L, Naude PJ, Rots M, DeJongste MJ, Eisel UL, Schoemaker RG (2015) The role of neutrophil gelatinase associated lipocalin (NGAL) as biological constituent linking depression and cardiovascular disease. Brain Behav Immun 46:23–32CrossRefGoogle Scholar
  16. Guo H, Jin D, Zhang Y, Wright W, Bazuine M, Brockman DA, Bernlohr DA, Chen X (2010) Lipocalin-2 deficiency impairs thermogenesis and potentiates diet-induced insulin resistance in mice. Diabetes 59:1376–1385CrossRefPubMedPubMedCentralGoogle Scholar
  17. Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimaki M (2015) Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 49:206–215CrossRefPubMedPubMedCentralGoogle Scholar
  18. Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5:15CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jang E, Kim JH, Lee S, Kim JH, Seo JW, Jin M, Lee MG, Jang IS, Lee WH, Suk K (2013a) Phenotypic polarization of activated astrocytes: the critical role of lipocalin-2 in the classical inflammatory activation of astrocytes. J Immunol 1950(191):5204–5219CrossRefGoogle Scholar
  20. Jang E, Lee S, Kim JH, Kim JH, Seo JW, Lee WH, Mori K, Nakao K, Suk K (2013b) Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J 27:1176–1190CrossRefGoogle Scholar
  21. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA (2015) Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiat 72:603–611CrossRefGoogle Scholar
  22. Kang SS, Ren Y, Liu CC, Kurti A, Baker KE, Bu G, Asmann Y, Fryer JD (2018) Lipocalin-2 protects the brain during inflammatory conditions. Mol Psychiatry 23:344–350CrossRefGoogle Scholar
  23. Kappelmann N, Lewis G, Dantzer R, Jones PB, Khandaker GM (2018) Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry 23:335–343CrossRefGoogle Scholar
  24. Law IK, Xu A, Lam KS, Berger T, Mak TW, Vanhoutte PM, Liu JT, Sweeney G, Zhou M, Yang B, Wang Y (2010) Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes 59:872–882CrossRefPubMedPubMedCentralGoogle Scholar
  25. Layoun A, Huang H, Calve A, Santos MM (2012) Toll-like receptor signal adaptor protein MyD88 is required for sustained endotoxin-induced acute hypoferremic response in mice. Am J Pathol 180:2340–2350CrossRefGoogle Scholar
  26. Leighton SP, Nerurkar L, Krishnadas R, Johnman C, Graham GJ, Cavanagh J (2018) Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis. Mol Psychiatry 23:48–58CrossRefPubMedPubMedCentralGoogle Scholar
  27. Marijnissen RM, Naude PJ, Comijs HC, Schoevers RA, Oude Voshaar RC (2014) Waist circumference and neutrophil gelatinase-associated lipocalin in late-life depression. Brain Behav Immun 37:231–239CrossRefGoogle Scholar
  28. Miller AH, Haroon E, Raison CL, Felger JC (2013) Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 30:297–306CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mohan H, de Haan R, Mansvelder HD, de Kock CPJ (2018) The posterior parietal cortex as integrative hub for whisker sensorimotor information. Neuroscience 368:240–245CrossRefGoogle Scholar
  30. Mommersteeg PMC, Schoemaker RG, Naude PJW, Eisel ULM, Garrelds IM, Schalkwijk CG, Westerhuis B, Kop WJ, Denollet J (2016) Depression and markers of inflammation as predictors of all-cause mortality in heart failure. Brain Behav Immun 57:144–150CrossRefGoogle Scholar
  31. Moreau M, Lestage J, Verrier D, Mormede C, Kelley KW, Dantzer R, Castanon N (2005) Bacille Calmette-Guerin inoculation induces chronic activation of peripheral and brain indoleamine 2,3-dioxygenase in mice. J Infect Dis 192:537–544CrossRefGoogle Scholar
  32. Moreau M, Andre C, O’Connor JC, Dumich SA, Woods JA, Kelley KW, Dantzer R, Lestage J, Castanon N (2008) Inoculation of Bacillus Calmette-Guerin to mice induces an acute episode of sickness behavior followed by chronic depressive-like behavior. Brain Behav Immun 22:1087–1095CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mosialou I, Shikhel S, Liu JM, Maurizi A, Luo N, He Z, Huang Y, Zong H, Friedman RA, Barasch J, Lanzano P, Deng L, Leibel RL, Rubin M, Nickolas T, Chung W, Zeltser LM, Williams KW, Pessin JE, Kousteni S (2017) MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature 543:385–390CrossRefPubMedPubMedCentralGoogle Scholar
  34. Naude PJ, Nyakas C, Eiden LE, Ait-Ali D, van der Heide R, Engelborghs S, Luiten PG, De Deyn PP, den Boer JA, Eisel UL (2012) Lipocalin 2: novel component of proinflammatory signaling in Alzheimer’s disease. FASEB J 26:2811–2823CrossRefPubMedPubMedCentralGoogle Scholar
  35. Naude PJ, Mommersteeg PM, Zijlstra WP, Gouweleeuw L, Kupper N, Eisel UL, Kop WJ, Schoemaker RG (2014) Neutrophil gelatinase-associated lipocalin and depression in patients with chronic heart failure. Brain Behav Immun 38:59–65CrossRefGoogle Scholar
  36. Naude PJ, Mommersteeg PM, Gouweleeuw L, Eisel UL, Denollet J, Westerhuis LW, Schoemaker RG (2015) NGAL and other markers of inflammation as competitive or complementary markers for depressive symptom dimensions in heart failure. World J Biol Psychiatry 16:536–541CrossRefGoogle Scholar
  37. O’Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14:511–522CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ostvik AE, Granlund AV, Torp SH, Flatberg A, Beisvag V, Waldum HL, Flo TH, Espevik T, Damas JK, Sandvik AK (2013) Expression of Toll-like receptor-3 is enhanced in active inflammatory bowel disease and mediates the excessive release of lipocalin 2. Clin Exp Immunol 173:502–511CrossRefPubMedPubMedCentralGoogle Scholar
  39. Palmiter RD (2017) Physiology: bone-derived hormone suppresses appetite. Nature 543:320–322CrossRefGoogle Scholar
  40. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, Haroon E, Miller AH (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70:31–41CrossRefPubMedPubMedCentralGoogle Scholar
  41. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, Pollmacher T (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58:445–452CrossRefGoogle Scholar
  42. Schaefer M, Schwaiger M, Pich M, Lieb K, Heinz A (2003) Neurotransmitter changes by interferon-alpha and therapeutic implications. Pharmacopsychiatry 36(Suppl 3):S203–S206PubMedGoogle Scholar
  43. Smith KJ, Au B, Ollis L, Schmitz N (2018) The association between C-reactive protein, Interleukin-6 and depression among older adults in the community: a systematic review and meta-analysis. Exp Gerontol 102:109–132CrossRefGoogle Scholar
  44. Sunil VR, Patel KJ, Nilsen-Hamilton M, Heck DE, Laskin JD, Laskin DL (2007) Acute endotoxemia is associated with upregulation of lipocalin 24p3/Lcn2 in lung and liver. Exp Mol Pathol 83:177–187CrossRefPubMedPubMedCentralGoogle Scholar
  45. Teixeira S, Machado S, Velasques B, Sanfim A, Minc D, Peressutti C, Bittencourt J, Budde H, Cagy M, Anghinah R, Basile LF, Piedade R, Ribeiro P, Diniz C, Cartier C, Gongora M, Silva F, Manaia F, Silva JG (2014) Integrative parietal cortex processes: neurological and psychiatric aspects. J Neurol Sci 338:12–22CrossRefGoogle Scholar
  46. Valkanova V, Ebmeier KP, Allan CL (2013) CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord 150:736–744CrossRefGoogle Scholar
  47. Vasic N, Walter H, Sambataro F, Wolf RC (2009) Aberrant functional connectivity of dorsolateral prefrontal and cingulate networks in patients with major depression during working memory processing. Psychol Med 39:977–987CrossRefGoogle Scholar
  48. Zhang J, Wu Y, Zhang Y, Leroith D, Bernlohr DA, Chen X (2008) The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol Endocrinol 22:1416–1426CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zhao P, Elks CM, Stephens JM (2014) The induction of lipocalin-2 protein expression in vivo and in vitro. J Biol Chem 289:5960–5969CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Elisabeth G. Vichaya
    • 1
    Email author
  • Phillip S. Gross
    • 1
  • Darlene J. Estrada
    • 1
  • Steve W. Cole
    • 2
  • Aaron J. Grossberg
    • 3
  • Scott E. Evans
    • 4
  • Michael J. Tuvim
    • 4
  • Burton F. Dickey
    • 4
  • Robert Dantzer
    • 1
  1. 1.Department of Symptom Research, Division of Internal MedicineUniversity of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Departments of Medicine and Psychiatry & Biobehavioral Sciences, Jonsson Comprehensive Cancer Center and Norman Cousins CenterUCLA School of MedicineLos AngelesUSA
  3. 3.Department of Radiation Medicine, School of MedicineOregon Health & Sciences UniversityPortlandUSA
  4. 4.Department of Pulmonary Medicine, Division of Internal MedicineUniversity of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations