Advertisement

Psychopharmacology

, Volume 236, Issue 2, pp 641–655 | Cite as

Neuroprotective effects of berberine on recognition memory impairment, oxidative stress, and damage to the purinergic system in rats submitted to intracerebroventricular injection of streptozotocin

  • Juliana Sorraila de OliveiraEmail author
  • Fátima Husein Abdalla
  • Guilherme Lopes Dornelles
  • Taís Vidal Palma
  • Cristiane Signor
  • Jamile da Silva Bernardi
  • Jucimara Baldissarelli
  • Luana Suéling Lenz
  • Vitor Antunes de Oliveira
  • Maria Rosa Chitolina Schetinger
  • Vera Maria Melchiors Morsch
  • Maribel Antonello Rubin
  • Cinthia Melazzo de Andrade
Original Investigation
  • 162 Downloads

Abstract

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease. The present study investigated the effects of 50 and 100 mg/kg berberine (BRB) on recognition memory, oxidative stress, and purinergic neurotransmission, in a model of sporadic dementia of the Alzheimer’s type induced by intracerebroventricular (ICV) injection of streptozotocin (STZ) in rats. Rats were submitted to ICV-STZ 3 mg/kg or saline, and 3 days later, were started on a treatment of BRB or saline for 21 days. The results demonstrated that BRB was effective in protecting against memory impairment, increased reactive oxygen species, and the subsequent increase in protein and lipid oxidation in the cerebral cortex and hippocampus, as well as δ-aminolevulinate dehydratase inhibition in the cerebral cortex. Moreover, the decrease in total thiols, and the reduced glutathione and glutathione S-transferase activity in the cerebral cortex and hippocampus of ICV-STZ rats, was prevented by BRB treatment. Besides an antioxidant effect, BRB treatment was capable of preventing decreases in ecto-nucleoside triphosphate diphosphohydrolase (NTPDase), 5′-nucleotidase (EC-5’-Nt), and adenosine deaminase (ADA) activities in synaptosomes of the cerebral cortex and hippocampus. Thus, our data suggest that BRB exerts a neuroprotective effect on recognition memory, as well as on oxidative stress and oxidative stress-related damage, such as dysfunction of the purinergic system. This suggests that BRB may act as a promising multipotent agent for the treatment of AD.

Keywords

Reactive species Antioxidant Ectoenzymes Alzheimer 

Notes

Funding information

This study was supported by Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior on number 88882.182124/2018-01, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and the Federal University of Santa Maria, RS, Brazil, and the FINEP research grant “Rede Instituto Brasileiro de Neurociências (IBNet)”, Instituto Nacional de Ciências Tecnológicas (INCT). All the experiments comply with the current laws of Brazil.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Abdalla FH, Schmatz R, Cardoso AM, Carvalho FB, Baldissarelli J, de Oliveira JS, Rosa MM, Gonçalves Nunes MA, Rubin MA, da Cruz IBM, Barbisan F, Dressler VL, Pereira LB, Schetinger MRC, Morsch VM, Gonçalves JF, Mazzanti CM (2014) Quercetin protects the impairment of memory and anxiogenic-like behavior in rats exposed to cadmium: possible involvement of the acetylcholinesterase and Na(+),K(+)-ATPase activities. Physiol Behav 135:152–167.  https://doi.org/10.1016/j.physbeh.2014.06.008 CrossRefGoogle Scholar
  2. Ahmed T, Gilani AU, Abdollahi M, Daglia M, Nabavi SF, Nabavi SM (2015) Berberine and neurodegeneration: a review of literature. Pharmacol Rep 67:970–979.  https://doi.org/10.1016/j.pharep.2015.03.002 CrossRefGoogle Scholar
  3. Alberici LC, Vercesi AE, Oliveira HC (2011) Mitochondrial energy metabolism and redox responses to hypertriglyceridemia. J Bioenerg Biomembr 43:19–23.  https://doi.org/10.1007/s10863-011-9326-y CrossRefGoogle Scholar
  4. Allen M, Zou F, Chai H, Younkin CS, Miles R, Nair AA, Crook JE, Pankratz V, Carrasquillo MM, Rowley CN, Nguyen T, Ma L, Malphrus KG, Bisceglio G, Ortolaza AI, Palusak R, Middha S, Maharjan S, Georgescu C, Schultz D, Rakhshan F, Kolbert CP, Jen J, Sando SB, Aasly JO, Barcikowska M, Uitti RJ, Wszolek ZK, Ross OA, Petersen RC, Graff-Radford NR, Dickson DW, Younkin SG, Ertekin-Taner N (2012) Glutathione S-transferase omega genes in Alzheimer and Parkinson disease risk, age-at-diagnosis and brain gene expression: an association study with mechanistic implications. Mol Neurodegener 7:13.  https://doi.org/10.1186/1750-1326-7-13 CrossRefGoogle Scholar
  5. Ansari MA, Scheff SW (2010) Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol 69:155–167.  https://doi.org/10.1097/NEN.0b013e3181cb5af4 CrossRefGoogle Scholar
  6. Aschenbrenner AJ, Balota DA, Fagan AM, Duchek JM, Benzinger TL, Morris JC (2015) Alzheimer disease cerebrospinal fluid biomarkers moderate baseline differences and predict longitudinal change in attentional control and episodic memory composites in the adult children study. J Int Neuropsychol Soc 21:573–583.  https://doi.org/10.1017/S1355617715000776 CrossRefGoogle Scholar
  7. Atamna H, Frey WH 2nd (2004) A role for heme in Alzheimer's disease: heme binds amyloid beta and has altered metabolism. Proc Natl Acad Sci U S A 101:11153–11158.  https://doi.org/10.1073/pnas.0404349101 CrossRefGoogle Scholar
  8. Atamna H, Frey WH 2nd (2007) Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer's disease. Mitochondrion 7:297–310.  https://doi.org/10.1016/j.mito.2007.06.001 CrossRefGoogle Scholar
  9. Baierle M, Charão M, Göethel G, Barth A, Fracasso R, Bubols G, Sauer E, Campanharo S, Rocha R, Saint'Pierre T, Bordignon S, Zibetti M, Trentini C, Ávila D, Gioda A, Garcia S (2014) Are delta-aminolevulinate dehydratase inhibition and metal concentrations additional factors for the age-related cognitive decline? Int J Environ Res Public Health 11:10851–10867.  https://doi.org/10.3390/ijerph111010851 CrossRefGoogle Scholar
  10. Bhattacharyya S, Bakshi R, Logan R, Ascherio A, Macklin EA, Schwarzschild MA (2016) Oral inosine persistently elevates plasma antioxidant capacity in Parkinson's disease. Mov Disord 31:417–421.  https://doi.org/10.1002/mds.26483 CrossRefGoogle Scholar
  11. Bhutada P, Mundhada Y, Bansod K, Tawari S, Patil S, Dixit P, Umathe S, Mundhada D (2011) Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes. Behav Brain Res 220:30–41.  https://doi.org/10.1016/j.bbr.2011.01.022 CrossRefGoogle Scholar
  12. Bonan CD (2012) Ectonucleotidases and nucleotide/nucleoside transporters as pharmacological targets for neurological disorders. CNS Neurol Disord Drug Targets 11:739–750CrossRefGoogle Scholar
  13. Boyne AF, Ellman GL (1972) A methodology for analysis of tissue sulfhydryl components. Anal Biochem 46:639–653CrossRefGoogle Scholar
  14. Brito VB, Folmer V, Soares JC, Silveira ID, Rocha JB (2007) Long-term sucrose and glucose consumption decreases the delta-aminolevulinate dehydratase activity in mice. Nutrition 23:818–826.  https://doi.org/10.1016/j.nut.2007.08.002 CrossRefGoogle Scholar
  15. Burnstock G (2016) An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology 104:4–17.  https://doi.org/10.1016/j.neuropharm.2015.05.031 CrossRefGoogle Scholar
  16. Burnstock G, Krugel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274.  https://doi.org/10.1016/j.pneurobio.2011.08.006 CrossRefGoogle Scholar
  17. Calabrese V, Sultana R, Scapagnini G, Guagliano E, Sapienza M, Bella R, Kanski J, Pennisi G, Mancuso C, Stella AMG, Butterfield DA (2006) Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer's disease. Antioxid Redox Signal 8:1975–1986.  https://doi.org/10.1089/ars.2006.8.1975 CrossRefGoogle Scholar
  18. Cardoso AM, Schetinger MR, Correia-de-Sa P, Sevigny J (2015) Impact of ectonucleotidases in autonomic nervous functions. Auton Neurosci 191:25–38.  https://doi.org/10.1016/j.autneu.2015.04.014 CrossRefGoogle Scholar
  19. Cenini G, Rub C, Bruderek M, Voos W (2016) Amyloid beta-peptides interfere with mitochondrial preprotein import competence by a coaggregation process. Mol Biol Cell 27:3257–3272.  https://doi.org/10.1091/mbc.E16-05-0313 CrossRefGoogle Scholar
  20. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+ −stimulated ATPase activity. Anal Biochem 157:375–380CrossRefGoogle Scholar
  21. Chen Q, Mo R, Wu N, Zou X, Shi C, Gong J, Li J, Fang K, Wang D, Yang D, Wang K, Chen J (2017) Berberine ameliorates diabetes-associated cognitive decline through modulation of aberrant inflammation response and insulin signaling pathway in DM rats. Front Pharmacol 8:334.  https://doi.org/10.3389/fphar.2017.00334 CrossRefGoogle Scholar
  22. Cho CH, Kim EA, Kim J, Choi SY, Yang SJ, Cho SW (2016) N-Adamantyl-4-methylthiazol-2-amine suppresses amyloid beta-induced neuronal oxidative damage in cortical neurons. Free Radic Res 50:678–690.  https://doi.org/10.3109/10715762.2016.1167277 CrossRefGoogle Scholar
  23. de Oliveira JS, Abdalla FH, Dornelles GL, Adefegha SA, Palma TV, Signor C, da Silva Bernardi J, Baldissarelli J, Lenz LS, Magni LP, Rubin MA, Pillat MM, de Andrade CM (2016) Berberine protects against memory impairment and anxiogenic-like behavior in rats submitted to sporadic Alzheimer's-like dementia: involvement of acetylcholinesterase and cell death. Neurotoxicology 57:241–250.  https://doi.org/10.1016/j.neuro.2016.10.008 CrossRefGoogle Scholar
  24. Di Pietro V et al (2014) Neuroglobin expression and oxidant/antioxidant balance after graded traumatic brain injury in the rat. Free Radic Biol Med 69:258–264.  https://doi.org/10.1016/j.freeradbiomed.2014.01.032 CrossRefGoogle Scholar
  25. Dkhil MA (2014) Role of berberine in ameliorating Schistosoma mansoni-induced hepatic injury in mice. Biol Res 47(8):1–7.  https://doi.org/10.1186/0717-6287-47-8 Google Scholar
  26. do Nascimento SN, Barth A, Göethel G, Baierle M, Charão MF, Brucker N, Moro AM, Bubols GB, Sobreira JS, Sauer E, Rocha R, Gioda A, Dias AC, Salles JF, Garcia SC (2015) Cognitive deficits and ALA-D-inhibition in children exposed to multiple metals. Environ Res 136:387–395.  https://doi.org/10.1016/j.envres.2014.10.003 CrossRefGoogle Scholar
  27. Droge W, Kinscherf R (2008) Aberrant insulin receptor signaling and amino acid homeostasis as a major cause of oxidative stress in aging. Antioxid Redox Signal 10:661–678.  https://doi.org/10.1089/ars.2007.1953 CrossRefGoogle Scholar
  28. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77CrossRefGoogle Scholar
  29. Fernandez-Cuartero B, Rebollar JL, Batlle A, Enriquez de Salamanca R (1999) Delta aminolevulinate dehydratase (ALA-D) activity in human and experimental diabetes mellitus. Int J Biochem Cell Biol 31:479–488CrossRefGoogle Scholar
  30. Ferrer I (2012) Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia. Prog Neurobiol 97:38–51.  https://doi.org/10.1016/j.pneurobio.2012.03.005 CrossRefGoogle Scholar
  31. Feuerstein D, Backes H, Gramer M, Takagaki M, Gabel P, Kumagai T, Graf R (2016) Regulation of cerebral metabolism during cortical spreading depression. J Cereb Blood Flow Metab 36:1965–1977.  https://doi.org/10.1177/0271678X15612779 CrossRefGoogle Scholar
  32. Folmer V, Soares JC, Rocha JB (2002) Oxidative stress in mice is dependent on the free glucose content of the diet. Int J Biochem Cell Biol 34:1279–1285CrossRefGoogle Scholar
  33. Folmer V, Soares JC, Gabriel D, Rocha JB (2003) A high fat diet inhibits delta-aminolevulinate dehydratase and increases lipid peroxidation in mice (Mus musculus). J Nutr 133:2165–2170CrossRefGoogle Scholar
  34. Ghosh C, Seal M, Mukherjee S, Ghosh Dey S (2015) Alzheimer's disease: a heme-abeta perspective. Acc Chem Res 48:2556–2564.  https://doi.org/10.1021/acs.accounts.5b00102 CrossRefGoogle Scholar
  35. Giusti G, Gakis C (1971) Temperature conversion factors, activation energy, relative substrate specificity and optimum pH of adenosine deaminase from human serum and tissues. Enzyme 12:417–425CrossRefGoogle Scholar
  36. Gomes GM, Dalmolin GD, Bar J, Karpova A, Mello CF, Kreutz MR, Rubin MA (2014) Inhibition of the polyamine system counteracts beta-amyloid peptide-induced memory impairment in mice: involvement of extrasynaptic NMDA receptors. PLoS One 9:e99184.  https://doi.org/10.1371/journal.pone.0099184 CrossRefGoogle Scholar
  37. Grieb P (2016) Intracerebroventricular Streptozotocin injections as a model of Alzheimer's disease: in search of a relevant mechanism. Mol Neurobiol 53:1741–1752.  https://doi.org/10.1007/s12035-015-9132-3 CrossRefGoogle Scholar
  38. Grotto D, Valentini J, Fillion M, Passos CJ, Garcia SC, Mergler D, Barbosa F Jr (2010) Mercury exposure and oxidative stress in communities of the Brazilian Amazon. Sci Total Environ 408:806–811.  https://doi.org/10.1016/j.scitotenv.2009.10.053 CrossRefGoogle Scholar
  39. Gumusyayla S, Vural G, Bektas H, Deniz O, Neselioglu S, Erel O (2016) A novel oxidative stress marker in patients with Alzheimer's disease: dynamic thiol-disulphide homeostasis. Acta Neuropsychiatr 28:315–320.  https://doi.org/10.1017/neu.2016.13 CrossRefGoogle Scholar
  40. Guo JL, Narasimhan S, Changolkar L, He Z, Stieber A, Zhang B, Gathagan RJ, Iba M, McBride JD, Trojanowski JQ, Lee VMY (2016) Unique pathological tau conformers from Alzheimer's brains transmit tau pathology in nontransgenic mice. J Exp Med 213:2635–2654.  https://doi.org/10.1084/jem.20160833 CrossRefGoogle Scholar
  41. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139Google Scholar
  42. Haghani M, Shabani M, Tondar M (2015) The therapeutic potential of berberine against the altered intrinsic properties of the CA1 neurons induced by Abeta neurotoxicity. Eur J Pharmacol 758:82–88.  https://doi.org/10.1016/j.ejphar.2015.03.016 CrossRefGoogle Scholar
  43. Heymann D, Reddington M, Kreutzberg GW (1984) Subcellular localization of 5′-nucleotidase in rat brain. J Neurochem 43:971–978CrossRefGoogle Scholar
  44. Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222.  https://doi.org/10.1016/j.cell.2012.02.040 CrossRefGoogle Scholar
  45. Huang M, Jiang X, Liang Y, Liu Q, Chen S, Guo Y (2017) Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of beta-amyloid in APP/tau/PS1 mouse model of Alzheimer's disease. Exp Gerontol 91:25–33.  https://doi.org/10.1016/j.exger.2017.02.004 CrossRefGoogle Scholar
  46. Imenshahidi M, Hosseinzadeh H (2016) Berberis vulgaris and berberine: an update review. Phytother Res 30:1745–1764.  https://doi.org/10.1002/ptr.5693 CrossRefGoogle Scholar
  47. Jacques-Silva MC, Nogueira CW, Broch LC, Flores EM, Rocha JB (2001) Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharmacol Toxicol 88:119–125CrossRefGoogle Scholar
  48. Jahn H (2013) Memory loss in Alzheimer's disease. Dialogues Clin Neurosci 15:445–454Google Scholar
  49. Jiang W, Li S, Li X (2015) Therapeutic potential of berberine against neurodegenerative diseases. Sci China Life Sci 58:564–569.  https://doi.org/10.1007/s11427-015-4829-0 CrossRefGoogle Scholar
  50. Jiang T, Sun Q, Chen S (2016) Oxidative stress: a major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson's disease and Alzheimer's disease. Prog Neurobiol 147:1–19.  https://doi.org/10.1016/j.pneurobio.2016.07.005 CrossRefGoogle Scholar
  51. Jung HA, Min BS, Yokozawa T, Lee JH, Kim YS, Choi JS (2009) Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol Pharm Bull 32:1433–1438CrossRefGoogle Scholar
  52. Junqueira SC, dos Santos Coelho I, Lieberknecht V, Cunha MP, Calixto JB, Rodrigues ALS, Santos ARS, Dutra RC (2016) Inosine, an endogenous purine nucleoside, suppresses immune responses and protects mice from experimental autoimmune encephalomyelitis: a role for A2A adenosine receptor. Mol Neurobiol 54:3271–3285.  https://doi.org/10.1007/s12035-016-9893-3 CrossRefGoogle Scholar
  53. Kalalian-Moghaddam H, Baluchnejadmojarad T, Roghani M, Goshadrou F, Ronaghi A (2013) Hippocampal synaptic plasticity restoration and anti-apoptotic effect underlie berberine improvement of learning and memory in streptozotocin-diabetic rats. Eur J Pharmacol 698:259–266.  https://doi.org/10.1016/j.ejphar.2012.10.020 CrossRefGoogle Scholar
  54. Kamat PK, Kalani A, Rai S, Tota SK, Kumar A, Ahmad AS (2016) Streptozotocin intracerebroventricular-induced neurotoxicity and brain insulin resistance: a therapeutic intervention for treatment of sporadic Alzheimer's disease (sAD)-like pathology. Mol Neurobiol 53:4548–4562.  https://doi.org/10.1007/s12035-015-9384-y CrossRefGoogle Scholar
  55. Khan MB, Khan MM, Khan A, Ahmed ME, Ishrat T, Tabassum R, Vaibhav K, Ahmad A, Islam F (2012) Naringenin ameliorates Alzheimer's disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem Int 61:1081–1093.  https://doi.org/10.1016/j.neuint.2012.07.025 CrossRefGoogle Scholar
  56. Kheir MM, Wang Y, Hua L, Hu J, Li L, Lei F, Du L (2010) Acute toxicity of berberine and its correlation with the blood concentration in mice. Food Chem Toxicol 48:1105–1110.  https://doi.org/10.1016/j.fct.2010.01.033 CrossRefGoogle Scholar
  57. Koupenova M, Ravid K (2013) Adenosine, adenosine receptors and their role in glucose homeostasis and lipid metabolism. J Cell Physiol.  https://doi.org/10.1002/jcp.24352
  58. Kovacs Z, Juhasz G, Palkovits M, Dobolyi A, Kekesi KA (2011) Area, age and gender dependence of the nucleoside system in the brain: a review of current literature. Curr Top Med Chem 11:1012–1033CrossRefGoogle Scholar
  59. Kuruva CS, Reddy PH (2016) Amyloid beta modulators and neuroprotection in Alzheimer's disease: a critical appraisal. Drug Discov Today.  https://doi.org/10.1016/j.drudis.2016.10.010
  60. Lan J, Zhao Y, Dong F, Yan Z, Zheng W, Fan J, Sun G (2015) Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. J Ethnopharmacol 161:69–81.  https://doi.org/10.1016/j.jep.2014.09.049 CrossRefGoogle Scholar
  61. Lee DH, Gold R, Linker RA (2012) Mechanisms of oxidative damage in multiple sclerosis and neurodegenerative diseases: therapeutic modulation via fumaric acid esters. Int J Mol Sci 13:11783–11803.  https://doi.org/10.3390/ijms130911783 CrossRefGoogle Scholar
  62. Levine RL et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478CrossRefGoogle Scholar
  63. Liang QC, Jin D, Li Y, Wang RT (2014) Mean platelet volume and platelet distribution width in vascular dementia and Alzheimer's disease. Platelets 25:433–438.  https://doi.org/10.3109/09537104.2013.831064 CrossRefGoogle Scholar
  64. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153.  https://doi.org/10.1016/j.bbagen.2012.09.008 CrossRefGoogle Scholar
  65. Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD (2016) The role of reactive oxygen species in the pathogenesis of Alzheimer's disease, Parkinson's disease, and Huntington's disease: a mini review. Oxidative Med Cell Longev 2016:8590578.  https://doi.org/10.1155/2016/8590578 CrossRefGoogle Scholar
  66. Mao P, Manczak M, Calkins MJ, Truong Q, Reddy TP, Reddy AP, Shirendeb U, Lo HH, Rabinovitch PS, Reddy PH (2012) Mitochondria-targeted catalase reduces abnormal APP processing, amyloid beta production and BACE1 in a mouse model of Alzheimer's disease: implications for neuroprotection and lifespan extension. Hum Mol Genet 21:2973–2990.  https://doi.org/10.1093/hmg/dds128 CrossRefGoogle Scholar
  67. Martinez M, Ferrandiz ML, Diez A, Miquel J (1995) Depletion of cytosolic GSH decreases the ATP levels and viability of synaptosomes from aged mice but not from young mice. Mech Ageing Dev 84:77–81CrossRefGoogle Scholar
  68. Matamoros MA, Moran JF, Iturbe-Ormaetxe I, Rubio MC, Becana M (1999) Glutathione and homoglutathione synthesis in legume root nodules. Plant Physiol 121:879–888CrossRefGoogle Scholar
  69. Mehla J, Pahuja M, Gupta YK (2013) Streptozotocin-induced sporadic Alzheimer's disease: selection of appropriate dose. J Alzheimers Dis 33:17–21.  https://doi.org/10.3233/JAD-2012-120958 CrossRefGoogle Scholar
  70. Meraz-Rios MA, Franco-Bocanegra D, Toral Rios D, Campos-Pena V (2014) Early onset Alzheimer's disease and oxidative stress. Oxidative Med Cell Longev 2014:375968.  https://doi.org/10.1155/2014/375968 CrossRefGoogle Scholar
  71. Mojarad TB, Roghani M (2014) The anticonvulsant and antioxidant effects of Berberine in Kainate-induced temporal lobe epilepsy in rats. Basic Clin Neurosci 5:124–130Google Scholar
  72. Molteni R, Barnard RJ, Ying Z, Roberts CK, Gomez-Pinilla F (2002) A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112:803–814CrossRefGoogle Scholar
  73. Moore TL, Pessina MA, Finklestein SP, Killiany RJ, Bowley B, Benowitz L, Rosene DL (2016) Inosine enhances recovery of grasp following cortical injury to the primary motor cortex of the rhesus monkey. Restor Neurol Neurosci 34:827–848.  https://doi.org/10.3233/RNN-160661 Google Scholar
  74. Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65:1575–1582CrossRefGoogle Scholar
  75. Naghizadeh B, Mansouri MT (2015) Protective effects of gallic acid against streptozotocin-induced oxidative damage in rat striatum. Drug Res 65:515–520.  https://doi.org/10.1055/s-0034-1377012 Google Scholar
  76. Nagy A, Delgado-Escueta AV (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). J Neurochem 43:1114–1123CrossRefGoogle Scholar
  77. Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, Davies P, Tredici KD, Duyckaerts C, Frosch MP, Haroutunian V, Hof PR, Hulette CM, Hyman BT, Iwatsubo T, Jellinger KA, Jicha GA, Kövari E, Kukull WA, Leverenz JB, Love S, Mackenzie IR, Mann DM, Masliah E, McKee AC, Montine TJ, Morris JC, Schneider JA, Sonnen JA, Thal DR, Trojanowski JQ, Troncoso JC, Wisniewski T, Woltjer RL, Beach TG (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71:362–381.  https://doi.org/10.1097/NEN.0b013e31825018f7 CrossRefGoogle Scholar
  78. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  79. Parkinson Study Group S-PDI et al (2014) Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol 71:141–150.  https://doi.org/10.1001/jamaneurol.2013.5528 CrossRefGoogle Scholar
  80. Patil S, Tawari S, Mundhada D, Nadeem S (2015) Protective effect of berberine, an isoquinoline alkaloid ameliorates ethanol-induced oxidative stress and memory dysfunction in rats. Pharmacol Biochem Behav 136:13–20.  https://doi.org/10.1016/j.pbb.2015.07.001 CrossRefGoogle Scholar
  81. Pubill D, Dayanithi G, Siatka C, Andres M, Dufour MN, Guillon G, Mendre C (2001) ATP induces intracellular calcium increases and actin cytoskeleton disaggregation via P2x receptors. Cell Calcium 29:299–309.  https://doi.org/10.1054/ceca.2000.0194 CrossRefGoogle Scholar
  82. Rahman A (2009) The role of adenosine in Alzheimer's disease. Curr Neuropharmacol 7:207–216.  https://doi.org/10.2174/157015909789152119 CrossRefGoogle Scholar
  83. Roszek K, Czarnecka J (2015) Is Ecto-nucleoside triphosphate diphosphohydrolase (NTPDase)-based therapy of central nervous system disorders possible? Mini Rev Med Chem 15:5–20CrossRefGoogle Scholar
  84. Sandeep MS, Nandini CD (2017) Influence of quercetin, naringenin and berberine on glucose transporters and insulin signalling molecules in brain of streptozotocin-induced diabetic rats. Biomed Pharmacother 94:605–611.  https://doi.org/10.1016/j.biopha.2017.07.142
  85. Santos MA, Chand K, Chaves S (2016) Recent progress in repositioning Alzheimer's disease drugs based on a multitarget strategy. Future Med Chem 8:2113–2142.  https://doi.org/10.4155/fmc-2016-0103 CrossRefGoogle Scholar
  86. Sassa S (1982) Delta-aminolevulinic acid dehydratase assay. Enzyme 28:133–145CrossRefGoogle Scholar
  87. Saxena G, Patro IK, Nath C (2011) ICV STZ induced impairment in memory and neuronal mitochondrial function: a protective role of nicotinic receptor. Behav Brain Res 224:50–57.  https://doi.org/10.1016/j.bbr.2011.04.039 CrossRefGoogle Scholar
  88. Schetinger MR et al (2000) New benzodiazepines alter acetylcholinesterase and ATPDase activities. Neurochem Res 25:949–955CrossRefGoogle Scholar
  89. Schmatz R, Perreira LB, Stefanello N, Mazzanti C, Spanevello R, Gutierres J, Bagatini M, Martins CC, Abdalla FH, Daci da Silva Serres J, Zanini D, Vieira JM, Cardoso AM, Schetinger MR, Morsch VM (2012) Effects of resveratrol on biomarkers of oxidative stress and on the activity of delta aminolevulinic acid dehydratase in liver and kidney of streptozotocin-induced diabetic rats. Biochimie 94:374–383.  https://doi.org/10.1016/j.biochi.2011.08.005 CrossRefGoogle Scholar
  90. Simon J, Bastin C, Salmon E, Willems S (2016) Increasing the salience of fluency cues does not reduce the recognition memory impairment in Alzheimer's disease! J Neuropsychol 12:216–230.  https://doi.org/10.1111/jnp.12112 CrossRefGoogle Scholar
  91. Valentini J, Schmitt GC, Grotto D, Santa Maria LD, Boeira SP, Piva SJ, Brucker N, Bohrer D, Pomblum VJ, Emanuelli T, Garcia SC (2007) Human erythrocyte delta-aminolevulinate dehydratase activity and oxidative stress in hemodialysis patients. Clin Biochem 40:591–594.  https://doi.org/10.1016/j.clinbiochem.2007.02.007 CrossRefGoogle Scholar
  92. Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta 1842:1240–1247.  https://doi.org/10.1016/j.bbadis.2013.10.015 CrossRefGoogle Scholar
  93. Watson GPAC (1996) The rat brain in stereotaxic coordinates. Academic, San DiegoGoogle Scholar
  94. Zhang H, Wei J, Xue R, Wu JD, Zhao W, Wang ZZ, Wang SK, Zhou ZX, Song DQ, Wang YM, Pan HN, Kong WJ, Jiang JD (2010) Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metab Clin Exp 59:285–292.  https://doi.org/10.1016/j.metabol.2009.07.029 CrossRefGoogle Scholar
  95. Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer's disease. Oxidative Med Cell Longev 2013:316523–316510.  https://doi.org/10.1155/2013/316523 Google Scholar
  96. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502.  https://doi.org/10.1007/s11302-012-9309-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Juliana Sorraila de Oliveira
    • 1
    • 2
    Email author
  • Fátima Husein Abdalla
    • 3
  • Guilherme Lopes Dornelles
    • 4
  • Taís Vidal Palma
    • 1
    • 2
  • Cristiane Signor
    • 5
  • Jamile da Silva Bernardi
    • 3
  • Jucimara Baldissarelli
    • 3
  • Luana Suéling Lenz
    • 1
    • 2
  • Vitor Antunes de Oliveira
    • 3
  • Maria Rosa Chitolina Schetinger
    • 3
  • Vera Maria Melchiors Morsch
    • 3
  • Maribel Antonello Rubin
    • 5
  • Cinthia Melazzo de Andrade
    • 4
    • 6
  1. 1.Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Setor de Bioquímica e Estresse Oxidativo do Laboratório de Terapia Celular, Centro de Ciências RuraisUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Post-Graduation Program in Toxicological BiochemistryDepartment of Chemistry of the Center of Natural and Exact Sciences of the Federal University of Santa MariaSanta MariaBrazil
  3. 3.Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrazil
  4. 4.Programa de Pós graduação em Medicina Veterinária, Centro de Ciência Rurais/Departamento de Clínica de Pequenos Animais, Laboratório de Patologia Clínica Veternária/Hospital VeterinárioUniversidade Federal de Santa MariaSanta MariaBrazil
  5. 5.Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e ExatasLaboratório de Neuropsicofarmacologia Universidade Federal de Santa MariaSanta MariaBrazil
  6. 6.Department of Small Animal ClinicCenter of Rural Sciences Federal University of Santa MariaSanta MariaBrazil

Personalised recommendations