Advertisement

Psychopharmacology

, Volume 235, Issue 12, pp 3525–3534 | Cite as

Effect of overnight smoking abstinence on a marker for microglial activation: a [11C]DAA1106 positron emission tomography study

  • Arthur L. BrodyEmail author
  • Daniel Gehlbach
  • Lizette Y. Garcia
  • Ryutaro Enoki
  • Carl Hoh
  • David Vera
  • Kishore K. Kotta
  • Edythe D. London
  • Kyoji Okita
  • Erika L. Nurmi
  • Lauren C. Seaman
  • Mark A. Mandelkern
Original Investigation
  • 155 Downloads

Abstract

Rationale

Microglia are the main immune cells in the central nervous system and participate in neuroinflammation. When activated, microglia express increased levels of the translocator protein 18 kDa (TSPO), thereby making TSPO availability a marker for neuroinflammation. Using positron emission tomography (PET) scanning, our group recently demonstrated that smokers in the satiated state had 16.8% less binding of the radiotracer [11C]DAA1106 (a radioligand for TSPO) in the brain than nonsmokers.

Objectives

We sought to determine the effect of overnight smoking abstinence on [11C]DAA1106 binding in the brain.

Methods

Forty participants (22 smokers and 18 nonsmokers) completed the study (at one of two sites) and had usable data, which included images from a dynamic [11C]DAA1106 PET scanning session (with smokers having been abstinent for 17.9 ± 2.3 h) and a blood sample for TSPO genotyping. Whole brain standardized uptake values (SUVs) were determined, and analysis of variance was performed, with group (overnight abstinent smoker vs. nonsmoker), site, and TSPO genotype as factors, thereby controlling for site and genotype.

Results

Overnight abstinent smokers had lower whole brain SUVs (by 15.5 and 17.0% for the two study sites) than nonsmokers (ANCOVA, P = 0.004). The groups did not significantly differ in injected radiotracer dose or body weight, which were used to calculate SUV.

Conclusions

These results in overnight abstinent smokers are similar to those in satiated smokers, indicating that chronic cigarette smoking leads to global impairment of microglial activation which persists into early abstinence. Other explanations for study results, such as smoking leading to reduced numbers of microglia or smokers having more rapid metabolism of the radiotracer than nonsmokers, are also possible.

Keywords

Tobacco dependence Cigarette withdrawal Positron emission tomography Magnetic resonance imaging [11C]DAA1106 Microglial activation Neuroinflammation 

Notes

Acknowledgements

The authors thank Josephine Ribe and Christopher Davis for performing positron emission tomography scanning for the study.

Funding

This study was supported by the Tobacco-Related Disease Research Program (A.L.B. grant #588000), the National Institute on Drug Abuse (A.L.B. (R01 DA044909)), and the Department of Veterans Affairs, Office of Research and Development (CSR&D Merit Review Award I01 CX000412 (A.L.B.)). This research was also supported, in part, by the DOMONKAI fund from the Department of Psychiatry, Graduate School of Medicine, at Chiba University (K.O.), endowments from the Thomas P. and Katherine K. Pike Chair in Addiction Studies (E.D.L.) and Marjorie M. Green Trust (E.D.L.), and the National Institutes of Health (T32 DA024635 (L.S.)). The sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abobo CV, Ma J, Liang D (2012) Effect of menthol on nicotine pharmacokinetics in rats after cigarette smoke inhalation. Nicotine Tob Res 14:801–808PubMedPubMedCentralGoogle Scholar
  2. Anthony DC, Pitossi FJ (2012) Special issue commentary: the changing face of inflammation in the brain. Mol Cell NeurosciGoogle Scholar
  3. Beck AT, Steer RA, Ball R, Ranieri W (1996) Comparison of Beck depression inventories-IA and -II in psychiatric outpatients. J Pers Assess 67:588–597PubMedGoogle Scholar
  4. Benowitz NL, Hukkanen J, Jacob P, 3rd (2009) Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol 29–60Google Scholar
  5. Brody AL, Mandelkern MA, London ED, Childress AR, Bota RG, Ho ML, Lee GS, Saxena S, Baxter LR, Madsen D, Jarvik ME (2002) Brain metabolic changes during cigarette craving. Arch Gen Psychiatry 59:1162–1172PubMedGoogle Scholar
  6. Brody AL, Olmstead RE, London ED, Farahi J, Meyer JH, Grossman P, Lee GS, Huang J, Hahn EL, Mandelkern MA (2004) Smoking-induced ventral striatum dopamine release. Am J Psychiatr 161:1211–1218PubMedGoogle Scholar
  7. Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D, Jou J, Allen V, Tiongson E, Chefer SI, Koren AO, Mukhin AG (2006a) Cigarette smoking saturates brain alpha4beta2 nicotinic acetylcholine receptors. Arch Gen Psychiatry 63:907–915PubMedPubMedCentralGoogle Scholar
  8. Brody AL, Mandelkern MA, Olmstead RE, Scheibal D, Hahn E, Shiraga S, Zamora-Paja E, Farahi J, Saxena S, London ED, McCracken JT (2006b) Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. Arch Gen Psychiatry 63:808–816PubMedPubMedCentralGoogle Scholar
  9. Brody AL, Mandelkern MA, Costello MR, Abrams AL, Scheibal D, Farahi J, London ED, Olmstead RE, Rose JE, Mukhin AG (2009a) Brain nicotinic acetylcholine receptor occupancy: effect of smoking a denicotinized cigarette. IntJNeuropsychopharmacol 12:305–316Google Scholar
  10. Brody AL, Mandelkern MA, Olmstead RE, Allen-Martinez Z, Scheibal D, Abrams AL, Costello MR, Farahi J, Saxena S, Monterosso J, London ED (2009b) Ventral striatal dopamine release in response to smoking a regular vs a denicotinized cigarette. Neuropsychopharmacology 34:282–289PubMedGoogle Scholar
  11. Brody AL, Mandelkern MA, London ED, Khan A, Kozman D, Costello MR, Vellios EE, Archie MM, Bascom R, Mukhin AG (2011) Effect of secondhand smoke on occupancy of nicotinic acetylcholine receptors in brain. Arch Gen Psychiatry 68:953–960PubMedPubMedCentralGoogle Scholar
  12. Brody AL, Mukhin AG, La Charite J, Ta K, Farahi J, Sugar CA, Mamoun MS, Vellios E, Archie M, Kozman M, Phuong J, Arlorio F, Mandelkern MA (2013) Up-regulation of nicotinic acetylcholine receptors in menthol cigarette smokers. Int J Neuropsychopharmacol 16:957–966PubMedGoogle Scholar
  13. Brody AL, Okita K, Shieh J, Liang L, Hubert R, Mamoun M, Farahi J, Mandelkern MA (2014) Radiation dosimetry and biodistribution of the translocator protein radiotracer [(11)C]DAA1106 determined with PET/CT in healthy human volunteers. Nucl Med Biol 41:871–875PubMedPubMedCentralGoogle Scholar
  14. Brody AL, Hubert R, Mamoun MS, Enoki R, Garcia LY, Abraham P, Young P, Mandelkern MA (2016) Nicotinic acetylcholine receptor availability in cigarette smokers: effect of heavy caffeine or marijuana use. Psychopharmacology 233:3249–3257PubMedPubMedCentralGoogle Scholar
  15. Brody AL, Hubert R, Enoki R, Garcia LY, Mamoun MS, Okita K, London ED, Nurmi EL, Seaman LC, Mandelkern MA (2017) Effect of cigarette smoking on a marker for neuroinflammation: a [(11)C]DAA1106 positron emission tomography study. Neuropsychopharmacology 42:1630–1639PubMedPubMedCentralGoogle Scholar
  16. Chaki S, Funakoshi T, Yoshikawa R, Okuyama S, Okubo T, Nakazato A, Nagamine M, Tomisawa K (1999) Binding characteristics of [3H]DAA1106, a novel and selective ligand for peripheral benzodiazepine receptors. Eur J Pharmacol 371:197–204PubMedGoogle Scholar
  17. Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B (2008) Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging 35:2304–2319PubMedGoogle Scholar
  18. Colasanti A, Guo Q, Giannetti P, Wall MB, Newbould RD, Bishop C, Onega M, Nicholas R, Ciccarelli O, Muraro PA, Malik O, Owen DR, Young AH, Gunn RN, Piccini P, Matthews PM, Rabiner EA (2016) Hippocampal neuroinflammation, functional connectivity, and depressive symptoms in multiple sclerosis. Biol Psychiatry 80:62–72PubMedPubMedCentralGoogle Scholar
  19. Cosgrove KP, Batis J, Bois F, Maciejewski PK, Esterlis I, Kloczynski T, Stiklus S, Krishnan-Sarin S, O'Malley S, Perry E, Tamagnan G, Seibyl JP, Staley JK (2009) beta2-Nicotinic acetylcholine receptor availability during acute and prolonged abstinence from tobacco smoking. Arch Gen Psychiatry 66:666–676PubMedPubMedCentralGoogle Scholar
  20. Coughlin JM, Wang Y, Ma S, Yue C, Kim PK, Adams AV, Roosa HV, Gage KL, Stathis M, Rais R, Rojas C, McGlothan JL, Watkins CC, Sacktor N, Guilarte TR, Zhou Y, Sawa A, Slusher BS, Caffo B, Kassiou M, Endres CJ, Pomper MG (2014) Regional brain distribution of translocator protein using [(11)C]DPA-713 PET in individuals infected with HIV. J Neuro-Oncol 20:219–232Google Scholar
  21. De Simone R, Ajmone-Cat MA, Carnevale D, Minghetti L (2005) Activation of alpha7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J Neuroinflammation 2:4PubMedPubMedCentralGoogle Scholar
  22. Esterlis I, Cosgrove KP, Batis JC, Bois F, Stiklus SM, Perkins E, Seibyl JP, Carson RE, Staley JK (2010) Quantification of smoking-induced occupancy of {beta}2-nicotinic acetylcholine receptors: estimation of nondisplaceable binding. J Nucl Med 51:1226–1233PubMedPubMedCentralGoogle Scholar
  23. Fagerstrom KO (1978) Measuring the degree of physical dependence to tobacco smoking with reference to individualization of treatment. Addict Behav 3:235–241PubMedGoogle Scholar
  24. Foucault-Fruchard L, Antier D (2017) Therapeutic potential of alpha7 nicotinic receptor agonists to regulate neuroinflammation in neurodegenerative diseases. Neural Regen Res 12:1418–1421PubMedPubMedCentralGoogle Scholar
  25. Gandhi KK, Foulds J, Steinberg MB, Lu SE, Williams JM (2009) Lower quit rates among African American and Latino menthol cigarette smokers at a tobacco treatment clinic. Int J Clin Pract 63:360–367PubMedGoogle Scholar
  26. Gao Z, Nissen JC, Ji K, Tsirka SE (2014) The experimental autoimmune encephalomyelitis disease course is modulated by nicotine and other cigarette smoke components. PLoS One 9:e107979PubMedPubMedCentralGoogle Scholar
  27. Goncalves RB, Coletta RD, Silverio KG, Benevides L, Casati MZ, da Silva JS, Nociti FH Jr (2011) Impact of smoking on inflammation: overview of molecular mechanisms. Inflamm Res 60:409–424PubMedGoogle Scholar
  28. Gonzalez H, Elgueta D, Montoya A, Pacheco R (2014) Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 274:1–13PubMedGoogle Scholar
  29. Haarman BC, Burger H, Doorduin J, Renken RJ, Sibeijn-Kuiper AJ, Marsman JB, de Vries EF, de Groot JC, Drexhage HA, Mendes R, Nolen WA, Riemersma-Van der Lek RF (2016) Volume, metabolites and neuroinflammation of the hippocampus in bipolar disorder—a combined magnetic resonance imaging and positron emission tomography study. Brain Behav Immun 56:21–33PubMedGoogle Scholar
  30. Hafizi S, Tseng HH, Rao N, Selvanathan T, Kenk M, Bazinet RP, Suridjan I, Wilson AA, Meyer JH, Remington G, Houle S, Rusjan PM, Mizrahi R (2016) Imaging microglial activation in untreated first-episode psychosis: a PET study with [18F]FEPPA. Am J Psychiatry.  https://doi.org/10.1176/appi.ajp.2016.16020171 PubMedGoogle Scholar
  31. Hamelin L, Lagarde J, Dorothee G, Leroy C, Labit M, Comley RA, de Souza LC, Corne H, Dauphinot L, Bertoux M, Dubois B, Gervais P, Colliot O, Potier MC, Bottlaender M, Sarazin M, Clinical It (2016) Early and protective microglial activation in Alzheimer's disease: a prospective study using 18F-DPA-714 PET imaging. Brain 139:1252–1264PubMedGoogle Scholar
  32. Hannestad J, DellaGioia N, Gallezot JD, Lim K, Nabulsi N, Esterlis I, Pittman B, Lee JY, O'Connor KC, Pelletier D, Carson RE (2013) The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: a [(1)(1)C]PBR28 PET study. Brain Behav Immun 33:131–138PubMedPubMedCentralGoogle Scholar
  33. Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO (1991) The Fagerström test for nicotine dependence: a revision of the Fagerström tolerance questionnaire. Br J Addict 86:1119–1127PubMedGoogle Scholar
  34. Heck JD (2009) Smokers of menthol and nonmenthol cigarettes exhibit similar levels of biomarkers of smoke exposure. Cancer Epidemiol Biomark Prev 18:622–629Google Scholar
  35. Hukkanen J, Jacob P III, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57:79–115PubMedGoogle Scholar
  36. Ikoma Y, Yasuno F, Ito H, Suhara T, Ota M, Toyama H, Fujimura Y, Takano A, Maeda J, Zhang MR, Nakao R, Suzuki K (2007) Quantitative analysis for estimating binding potential of the peripheral benzodiazepine receptor with [(11)C]DAA1106. J Cereb Blood Flow Metab 27:173–184PubMedGoogle Scholar
  37. Koshimori Y, Ko JH, Mizrahi R, Rusjan P, Mabrouk R, Jacobs MF, Christopher L, Hamani C, Lang AE, Wilson AA, Houle S, Strafella AP (2015) Imaging striatal microglial activation in patients with Parkinson’s disease. PLoS One 10:e0138721PubMedPubMedCentralGoogle Scholar
  38. Kreisl WC, Lyoo CH, Liow JS, Wei M, Snow J, Page E, Jenko KJ, Morse CL, Zoghbi SS, Pike VW, Turner RS, Innis RB (2016) (11)C-PBR28 binding to translocator protein increases with progression of Alzheimer’s disease. Neurobiol Aging 44:53–61PubMedPubMedCentralGoogle Scholar
  39. Li H, Shi Q (2015) Drugs and diseases interacting with cigarette smoking in US prescription drug labelling. Clin Pharmacokinet 54:493–501PubMedGoogle Scholar
  40. Li X, Han X, Bao J, Liu Y, Ye A, Thakur M, Liu H (2016) Nicotine increases eclampsia-like seizure threshold and attenuates microglial activity in rat hippocampus through the alpha7 nicotinic acetylcholine receptor. Brain Res 1642:487–496PubMedGoogle Scholar
  41. Low D, Ginhoux F (2018) Recent advances in the understanding of microglial development and homeostasis. Cell Immunol 330:68–78PubMedGoogle Scholar
  42. Lyoo CH, Ikawa M, Liow JS, Zoghbi SS, Morse CL, Pike VW, Fujita M, Innis RB, Kreisl WC (2015) Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect Neuroinflammation measured with PET Radioligand binding to translocator protein. J Nucl Med 56:701–706PubMedPubMedCentralGoogle Scholar
  43. Maeda J, Suhara T, Zhang MR, Okauchi T, Yasuno F, Ikoma Y, Inaji M, Nagai Y, Takano A, Obayashi S, Suzuki K (2004) Novel peripheral benzodiazepine receptor ligand [11C]DAA1106 for PET: an imaging tool for glial cells in the brain. Synapse 52:283–291PubMedGoogle Scholar
  44. Mizrahi R, Rusjan PM, Kennedy J, Pollock B, Mulsant B, Suridjan I, De Luca V, Wilson AA, Houle S (2012) Translocator protein (18 kDa) polymorphism (rs6971) explains in-vivo brain binding affinity of the PET radioligand [(18)F]-FEPPA. J Cereb Blood Flow Metab 32:968–972PubMedPubMedCentralGoogle Scholar
  45. Muscat JE, Chen G, Knipe A, Stellman SD, Lazarus P, Richie JP Jr (2009) Effects of menthol on tobacco smoke exposure, nicotine dependence, and NNAL glucuronidation. Cancer Epidemiol Biomark Prev 18:35–41Google Scholar
  46. Narendran R, Lopresti BJ, Mason NS, Deuitch L, Paris J, Himes ML, Kodavali CV, Nimgaonkar VL (2014) Cocaine abuse in humans is not associated with increased microglial activation: an 18-kDa translocator protein positron emission tomography imaging study with [11C]PBR28. J Neurosci 34:9945–9950PubMedPubMedCentralGoogle Scholar
  47. Noda M, Kobayashi AI (2017) Nicotine inhibits activation of microglial proton currents via interactions with alpha7 acetylcholine receptors. J Physiol Sci 67:235–245PubMedGoogle Scholar
  48. Okubo T, Yoshikawa R, Chaki S, Okuyama S, Nakazato A (2004) Design, synthesis and structure-affinity relationships of aryloxyanilide derivatives as novel peripheral benzodiazepine receptor ligands. Bioorg Med Chem 12:423–438PubMedGoogle Scholar
  49. Okuyemi KS, Faseru B, Sanderson Cox L, Bronars CA, Ahluwalia JS (2007) Relationship between menthol cigarettes and smoking cessation among African American light smokers. Addiction 102:1979–1986PubMedGoogle Scholar
  50. Owen DR, Gunn RN, Rabiner EA, Bennacef I, Fujita M, Kreisl WC, Innis RB, Pike VW, Reynolds R, Matthews PM, Parker CA (2011) Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med 52:24–32PubMedGoogle Scholar
  51. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, Rhodes C, Pulford DJ, Bennacef I, Parker CA, StJean PL, Cardon LR, Mooser VE, Matthews PM, Rabiner EA, Rubio JP (2012) An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 32:1–5PubMedGoogle Scholar
  52. Park HJ, Lee PH, Ahn YW, Choi YJ, Lee G, Lee DY, Chung ES, Jin BK (2007) Neuroprotective effect of nicotine on dopaminergic neurons by anti-inflammatory action. Eur J Neurosci 26:79–89PubMedGoogle Scholar
  53. Pletcher MJ, Hulley BJ, Houston T, Kiefe CI, Benowitz N, Sidney S (2006) Menthol cigarettes, smoking cessation, atherosclerosis, and pulmonary function: the coronary artery risk development in young adults (CARDIA) study. Arch Intern Med 166:1915–1922PubMedGoogle Scholar
  54. Pluvy I, Garrido I, Pauchot J, Saboye J, Chavoin JP, Tropet Y, Grolleau JL, Chaput B (2015) Smoking and plastic surgery, part I. pathophysiological aspects: update and proposed recommendations. Ann Chir Plast Esthet 60:e3–e13PubMedGoogle Scholar
  55. Quik M (2004) Smoking, nicotine and Parkinson's disease. Trends Neurosci 27:561–568PubMedGoogle Scholar
  56. Quik M, Zhang D, McGregor M, Bordia T (2015) Alpha7 nicotinic receptors as therapeutic targets for Parkinson's disease. Biochem Pharmacol 97:399–407PubMedPubMedCentralGoogle Scholar
  57. Rinker B (2013) The evils of nicotine: an evidence-based guide to smoking and plastic surgery. Ann Plast Surg 70:599–605PubMedGoogle Scholar
  58. Rizzo G, Veronese M, Tonietto M, Zanotti-Fregonara P, Turkheimer FE, Bertoldo A (2014) Kinetic modeling without accounting for the vascular component impairs the quantification of [(11)C]PBR28 brain PET data. J Cereb Blood Flow Metab 34:1060–1069PubMedPubMedCentralGoogle Scholar
  59. Rom O, Avezov K, Aizenbud D, Reznick AZ (2013) Cigarette smoking and inflammation revisited. Respir Physiol Neurobiol 187:5–10PubMedGoogle Scholar
  60. SAMHSA (2009) Substance abuse and mental health services administration. Office of applied studies. The NSDUH Report: Use of Menthol CigarettesGoogle Scholar
  61. Schetters STT, Gomez-Nicola D, Garcia-Vallejo JJ, Van Kooyk Y (2017) Neuroinflammation: microglia and T cells get ready to tango. Front Immunol 8:1905PubMedGoogle Scholar
  62. Schuh KJ, Stitzer ML (1995) Desire to smoke during spaced smoking intervals. Psychopharmacology 120:289–295PubMedGoogle Scholar
  63. Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G, Suridjan I, Kennedy JL, Rekkas PV, Houle S, Meyer JH (2015) Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry 72:268–275PubMedPubMedCentralGoogle Scholar
  64. Shi FD, Piao WH, Kuo YP, Campagnolo DI, Vollmer TL, Lukas RJ (2009) Nicotinic attenuation of central nervous system inflammation and autoimmunity. J Immunol 182:1730–1739PubMedGoogle Scholar
  65. Shiffman SM, Jarvik ME (1976) Smoking withdrawal symptoms in two weeks of abstinence. Psychopharmacology 50:35–39PubMedGoogle Scholar
  66. Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J (2004) Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 89:337–343PubMedGoogle Scholar
  67. Song N, Wang J, Jiang H, Xie J (2018) Astroglial and microglial contributions to iron metabolism disturbance in Parkinson’s disease. Biochim Biophys Acta 1864:967–973Google Scholar
  68. Spielberger C (1983) Manual for the state-trait anxiety inventory consulting psychologists press, Palo Alto, CAGoogle Scholar
  69. Staley JK, Krishnan-Sarin S, Cosgrove KP, Krantzler E, Frohlich E, Perry E, Dubin JA, Estok K, Brenner E, Baldwin RM, Tamagnan GD, Seibyl JP, Jatlow P, Picciotto MR, London ED, O'Malley S, van Dyck CH (2006) Human tobacco smokers in early abstinence have higher levels of beta2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci 26:8707–8714PubMedGoogle Scholar
  70. Takano A, Arakawa R, Ito H, Tateno A, Takahashi H, Matsumoto R, Okubo Y, Suhara T (2010) Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]DAA1106. Int J Neuropsychopharmacol 13:943–950PubMedGoogle Scholar
  71. Towler J (2000) Cigarette smoking and its effects on wound healing. J Wound Care 9:100–104PubMedGoogle Scholar
  72. Turkheimer FE, Rizzo G, Bloomfield PS, Howes O, Zanotti-Fregonara P, Bertoldo A, Veronese M (2015) The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans 43:586–592PubMedPubMedCentralGoogle Scholar
  73. Varrone A, Oikonen V, Forsberg A, Joutsa J, Takano A, Solin O, Haaparanta-Solin M, Nag S, Nakao R, Al-Tawil N, Wells LA, Rabiner EA, Valencia R, Schultze-Mosgau M, Thiele A, Vollmer S, Dyrks T, Lehmann L, Heinrich T, Hoffmann A, Nordberg A, Halldin C, Rinne JO (2015) Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F]FEMPA in Alzheimer's disease patients and control subjects. Eur J Nucl Med Mol Imaging 42:438–446PubMedGoogle Scholar
  74. Venneti S, Lopresti BJ, Wang G, Slagel SL, Mason NS, Mathis CA, Fischer ML, Larsen NJ, Mortimer AD, Hastings TG, Smith AD, Zigmond MJ, Suhara T, Higuchi M, Wiley CA (2007) A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation. J Neurochem 102:2118–2131PubMedGoogle Scholar
  75. Venneti S, Wang G, Nguyen J, Wiley CA (2008) The positron emission tomography ligand DAA1106 binds with high affinity to activated microglia in human neurological disorders. J Neuropathol Exp Neurol 67:1001–1010PubMedPubMedCentralGoogle Scholar
  76. Waisman A, Ginhoux F, Greter M, Bruttger J (2015) Homeostasis of microglia in the adult brain: review of novel microglia depletion systems. Trends Immunol 36:625–636PubMedGoogle Scholar
  77. Wang M, Gao M, Zheng QH (2012) Fully automated synthesis of PET TSPO radioligands [11C]DAA1106 and [18F]FEDAA1106. Appl Radiat Isot 70:965–973PubMedGoogle Scholar
  78. Ward MM, Swan GE, Jack LM (2001) Self-reported abstinence effects in the first month after smoking cessation. Addict Behav 26:311–327PubMedGoogle Scholar
  79. Werley MS, Coggins CR, Lee PN (2007) Possible effects on smokers of cigarette mentholation: a review of the evidence relating to key research questions. Regul Toxicol Pharmacol 47:189–203PubMedGoogle Scholar
  80. Williams JM, Gandhi KK, Steinberg ML, Foulds J, Ziedonis DM, Benowitz NL (2007) Higher nicotine and carbon monoxide levels in menthol cigarette smokers with and without schizophrenia. Nicotine Tob Res 9:873–881PubMedGoogle Scholar
  81. Yasuno F, Ota M, Kosaka J, Ito H, Higuchi M, Doronbekov TK, Nozaki S, Fujimura Y, Koeda M, Asada T, Suhara T (2008) Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with [11C]DAA1106. Biol Psychiatry 64:835–841PubMedGoogle Scholar
  82. Yasuno F, Kosaka J, Ota M, Higuchi M, Ito H, Fujimura Y, Nozaki S, Takahashi S, Mizukami K, Asada T, Suhara T (2012) Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [(11)C]DAA1106. Psychiatry Res 203:67–74PubMedGoogle Scholar
  83. Yoder KK, Nho K, Risacher SL, Kim S, Shen L, Saykin AJ (2013) Influence of TSPO genotype on 11C-PBR28 standardized uptake values. J Nucl Med 54:1320–1322PubMedPubMedCentralGoogle Scholar
  84. Zhang MR, Kida T, Noguchi J, Furutsuka K, Maeda J, Suhara T, Suzuki K (2003) [(11)C]DAA1106: radiosynthesis and in vivo binding to peripheral benzodiazepine receptors in mouse brain. Nucl Med Biol 30:513–519PubMedGoogle Scholar
  85. Zurcher NR, Loggia ML, Lawson R, Chonde DB, Izquierdo-Garcia D, Yasek JE, Akeju O, Catana C, Rosen BR, Cudkowicz ME, Hooker JM, Atassi N (2015) Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28. Neuroimage Clin 7:409–414PubMedPubMedCentralGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  • Arthur L. Brody
    • 1
    • 2
    Email author return OK on get
  • Daniel Gehlbach
    • 1
    • 2
  • Lizette Y. Garcia
    • 1
    • 2
  • Ryutaro Enoki
    • 1
    • 2
  • Carl Hoh
    • 3
  • David Vera
    • 3
  • Kishore K. Kotta
    • 3
  • Edythe D. London
    • 4
    • 5
  • Kyoji Okita
    • 4
    • 5
    • 6
  • Erika L. Nurmi
    • 4
  • Lauren C. Seaman
    • 4
  • Mark A. Mandelkern
    • 7
  1. 1.Department of PsychiatryUniversity of California, San Diego/VA San Diego Healthcare SystemSan DiegoUSA
  2. 2.Department of ResearchVA San Diego Healthcare SystemSan DiegoUSA
  3. 3.Department of RadiologyUniversity of California, San DiegoSan DiegoUSA
  4. 4.Department of PsychiatryUniversity of California at Los AngelesLos AngelesUSA
  5. 5.Department of ResearchVA Greater Los Angeles Healthcare SystemLos AngelesUSA
  6. 6.Department of Clinical Neuroimaging, Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
  7. 7.Nuclear Medicine ServiceVA Greater Los Angeles Healthcare SystemLos AngelesUSA

Personalised recommendations