Advertisement

Psychopharmacology

, Volume 235, Issue 12, pp 3479–3493 | Cite as

Comparison of local spectral modulation, and temporal correlation, of simultaneously recorded EEG/fMRI signals during ketamine and midazolam sedation

  • Anna Forsyth
  • Rebecca McMillan
  • Doug Campbell
  • Gemma Malpas
  • Elizabeth Maxwell
  • Jamie Sleigh
  • Juergen Dukart
  • Joerg F Hipp
  • Suresh D MuthukumaraswamyEmail author
Original Investigation

Abstract

Rationale and objectives

The identification of biomarkers of drug action can be supported by non-invasive brain imaging techniques, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), with simultaneous collection plausibly overcoming the limitations of either modality alone. Despite this, few studies have assessed the feasibility and utility of recording simultaneous EEG/fMRI in a drug study.

Methods

We used simultaneous EEG/fMRI to assess the modulation of neural activity by ketamine and midazolam, in a placebo-controlled, single-blind, three-way cross-over design. Specifically, we analysed the sensitivity and direction of the spectral effects of each modality and the temporal correlations between the modulations of power of the common EEG bands and the blood-oxygen-level-dependent (BOLD) signal.

Results and conclusions

Demonstrating feasibility, local spectral effects were similar to those found in previous non-simultaneous EEG and fMRI studies. Ketamine administration resulted in a widespread reduction of BOLD fractional amplitude of low frequency fluctuations (fALFF) and a diverse pattern of effects in the different EEG bands. Midazolam increased fALFF in occipital, parietal, and temporal areas, and frontal delta and beta EEG power. While EEG spectra were more sensitive to pharmacological modulations than the fALFF bands, there was no clear spatial relationship between the two modalities. Additionally, ketamine modulated the temporal correlation strengths between the theta EEG band and the BOLD signal, whereas midazolam altered temporal correlations with the alpha and beta bands. Taken together, these results demonstrate the utility of simultaneous recording: each modality provides unique insights, and combinatorial analyses elicit more information than separate recordings.

Keywords

Electroencephalography Functional magnetic resonance imaging Simultaneous EEG/fMRI Ketamine Midazolam Frequency analysis 

Notes

Funding

This work was funded by F Hoffman La Roche Ltd.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

213_2018_5064_MOESM1_ESM.docx (1.6 mb)
Online Resource 1 The impact of physiological nose on the BOLD signal (DOCX 1.55 mb)
213_2018_5064_MOESM2_ESM.docx (1.1 mb)
Online Resource 2 Contrasting drug and placebo sessions (DOCX 1.06 mb)
213_2018_5064_MOESM3_ESM.docx (27 kb)
Online Resource 3 EEG/BOLD temporal correlations during placebo (DOCX 27 kb)
213_2018_5064_MOESM4_ESM.docx (19 kb)
Online Resource 4 Drug physiologies (DOCX 19 kb)

References

  1. Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage 12:230–239CrossRefGoogle Scholar
  2. Babiloni F, Mattia D, Babiloni C, Astolfi L, Salinari S, Basilisco A, Rossini PM, Marciani MG, Cincotti F (2004) Multimodal integration of EEG, MEG and fMRI data for the solution of the neuroimage puzzle. Magn Reson Imaging 22:1471–1476CrossRefGoogle Scholar
  3. Baenninger A, Palzes VA, Roach BJ, Mathalon DH, Ford JM, Koenig T (2017) Abnormal coupling between default mode network and delta and beta band brain electric activity in psychotic patients. Brain Connect 7:34–44CrossRefGoogle Scholar
  4. Balsters JH, O'Connell RG, Martin MP, Galli A, Cassidy SM, Kilcullen SM, Delmonte S, Brennan S, Meaney JF, Fagan AJ, Bokde ALW, Upton N, Lai R, Laruelle M, Lawlor B, Robertson IH (2011) Donepezil impairs memory in healthy older subjects: behavioural, EEG and simultaneous EEG/fMRI biomarkers. PLoS One 6:e24126CrossRefGoogle Scholar
  5. Beaver JD, Long CJ, Cole DM, Durcan MJ, Bannon LC, Mishra RG, Matthews PM (2011) The effects of nicotine replacement on cognitive brain activity during smoking withdrawal studied with simultaneous fMRI/EEG. Neuropsychopharmacology 36:1792–1800CrossRefGoogle Scholar
  6. Berchou R, Chayasirisobhon S, Green V, Mason K (1986) The pharmacodynamic properties of lorazepam and methylphenidate drugs on event-related potentials and power spectral analysis in normal subjects. Clin EEG (electroencephalography) 17:176–180Google Scholar
  7. Billard V, Gambus PL, Chamoun N, Stanski DR, Shafer SL (1997) A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther 61:45–58CrossRefGoogle Scholar
  8. Blain-Moraes S, Lee U, Ku S, Noh G, Mashour GA (2014) Electroencephalographic effects of ketamine on power, cross-frequency coupling, and connectivity in the alpha bandwidth. Front Syst Neurosci 8:114CrossRefGoogle Scholar
  9. Borsook D, Becerra L, Fava M (2013) Use of functional imaging across clinical phases in CNS drug development. Transl Psychiatry 3:e282CrossRefGoogle Scholar
  10. Bridwell DA, Wu L, Eichele T, Calhoun VD (2013) The spatiospectral characterization of brain networks: fusing concurrent EEG spectra and fMRI maps. NeuroImage 69:101–111CrossRefGoogle Scholar
  11. Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929CrossRefGoogle Scholar
  12. Carmichael DW, Vulliemoz S, Rodionov R, Thornton JS, McEvoy AW, Lemieux L (2012) Simultaneous intracranial EEG–fMRI in humans: protocol considerations and data quality. NeuroImage 63:301–309CrossRefGoogle Scholar
  13. Carmichael O, Schwarz AJ, Chatham CH, Scott D, Turner JA, Upadhyay J, Coimbra A, Goodman JA, Baumgartner R, English BA, Apolzan JW, Shankapal P, Hawkins KR (2017) The role of fMRI in drug development. Drug Discov Today 23:333–348CrossRefGoogle Scholar
  14. Clements JA, Nimmo WS (1981) Pharmacokinetics and analgesic effect of ketamine in man. Br J Anaesth 53:27–30CrossRefGoogle Scholar
  15. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am J Neuroradiol 22:1326–1333PubMedGoogle Scholar
  16. Cutler NR, Sramek JJ, Murphy MF, Riordan H, Bieck P, Carta A (2010) The Impending Crisis in CNS Drug Development. Critical Pathways to Success in CNS Drug Development. Wiley-Blackwell, Hoboken, pp 1–13Google Scholar
  17. de la Salle S, Choueiry J, Shah D, Bowers H, McIntosh J, Ilivitsky V, Knott V (2016) Effects of ketamine on resting-state EEG activity and their relationship to perceptual/dissociative symptoms in healthy humans. Front Pharmacol 7:348PubMedPubMedCentralGoogle Scholar
  18. De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage 29:1359–1367CrossRefGoogle Scholar
  19. Deakin JF, Lees J, McKie S, Hallak JE, Williams SR, Dursun SM (2008) Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Arch Gen Psychiatry 65:154–164CrossRefGoogle Scholar
  20. Diukova A, Ware J, Smith JE, Evans CJ, Murphy K, Rogers PJ, Wise RG (2012) Separating neural and vascular effects of caffeine using simultaneous EEG–FMRI: differential effects of caffeine on cognitive and sensorimotor brain responses. NeuroImage 62:239–249CrossRefGoogle Scholar
  21. Eichele T, Moosmann M, Wu L, Gutberlet I, Debener S (2010) Removal of MRI Artifacts from EEG Recordings. In: Ulllsperger M, and Debener S (ed) Simultaneous EEG and fMRI: Recording, Analysis, and Application Oxford, Oxford Scholarship Online.  https://doi.org/10.1093/acprof:oso/9780195372731.003.0006 CrossRefGoogle Scholar
  22. Epperson CN, Haga K, Mason GF, Sellers E, Gueorguieva R, Zhang W, Weiss E, Rothman DL, Krystal JH (2002) Cortical gamma-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry 59:851–858CrossRefGoogle Scholar
  23. Fellner MC, Volberg G, Mullinger KJ, Goldhacker M, Wimber M, Greenlee MW, Hanslmayr S (2016) Spurious correlations in simultaneous EEG-fMRI driven by in-scanner movement. Neuroimage 133:354–366CrossRefGoogle Scholar
  24. Fink M (2010) Remembering the lost neuroscience of pharmaco-EEG. Acta Psychiatr Scand 121:161–173CrossRefGoogle Scholar
  25. Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35(3):346–355CrossRefGoogle Scholar
  26. Goldman RI, Stern JM, Engel J, Cohen MS (2002) Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13:2487–2492CrossRefGoogle Scholar
  27. Greenblatt DJ, Legangneux E, Harmatz JS, Weinling E, Freeman J, Rice K, Zammit GK (2006) Dynamics and kinetics of a modified-release formulation of zolpidem: comparison with immediate-release standard zolpidem and placebo. J Clin Pharmacol 46:1469–1480CrossRefGoogle Scholar
  28. Greicius MD, Kiviniemi V, Tervonen O, Vainionpaa V, Alahuhta S, Reiss AL, Menon V (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29:839–847CrossRefGoogle Scholar
  29. Guo W-b, Liu F, Xue Z-m, Xu X-j, Wu R-r, Ma C-q, Wooderson SC, Tan C-l, Sun X-l, Chen J-D, Liu Z-n, Xiao C-q, Chen H-f, Zhao J-p (2012) Alterations of the amplitude of low-frequency fluctuations in treatment-resistant and treatment-response depression: a resting-state fMRI study. Prog Neuro-Psychopharmacol Biol Psychiatry 37:153–160CrossRefGoogle Scholar
  30. Hoptman MJ, Zuo X-N, Butler PD, Javitt DC, D'Angelo D, Mauro CJ, Milham MP (2010) Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophr Res 117:13–20CrossRefGoogle Scholar
  31. Iannetti GD, Wise RG (2007) BOLD functional MRI in disease and pharmacological studies: room for improvement? Magn Reson Imaging 25:978–988CrossRefGoogle Scholar
  32. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841CrossRefGoogle Scholar
  33. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM (2012) FSL. NeuroImage 62:782–790CrossRefGoogle Scholar
  34. Kiviniemi VJ, Haanpää H, Kantola J-H, Jauhiainen J, Vainionpää V, Alahuhta S, Tervonen O (2005) Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal. Magn Reson Imaging 23:531–537CrossRefGoogle Scholar
  35. Klein C, Hänggi J, Luechinger R, Jäncke L (2015) MRI with and without a high-density EEG cap—what makes the difference? NeuroImage 106:189–197CrossRefGoogle Scholar
  36. Kochs E, Werner C, Hoftman WE, Möllenberg O, Esch JS (1991) Concurrent increases in brain electrical activity and intracranial blood flow velocity during low-dose ketamine anaesthesia. Can J Anaesth 38:826–830CrossRefGoogle Scholar
  37. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214CrossRefGoogle Scholar
  38. Kuizenga K, Wierda JMKH, Kalkman CJ (2001) Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane. Br J Anaesth 86:354–360CrossRefGoogle Scholar
  39. Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003a) EEG-correlated fMRI of human alpha activity. NeuroImage 19:1463–1476CrossRefGoogle Scholar
  40. Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003b) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci 100:11053–11058CrossRefGoogle Scholar
  41. Liang P, Zhang H, Xu Y, Jia W, Zang Y, Li K (2015) Disruption of cortical integration during midazolam-induced light sedation. Hum Brain Mapp 36:4247–4261CrossRefGoogle Scholar
  42. Liu Z, de Zwart JA, Yao B, van Gelderen P, Kuo L-W, Duyn JH (2012) Finding thalamic BOLD correlates to posterior alpha EEG. NeuroImage 63:1060–1069CrossRefGoogle Scholar
  43. Liu F, Guo W, Liu L, Long Z, Ma C, Xue Z, Wang Y, Li J, Hu M, Zhang J, Du H, Zeng L, Liu Z, Wooderson SC, Tan C, Zhao J, Chen H (2013) Abnormal amplitude low-frequency oscillations in medication-naive, first-episode patients with major depressive disorder: a resting-state fMRI study. J Affect Disord 146:401–406CrossRefGoogle Scholar
  44. Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664CrossRefGoogle Scholar
  45. Mantini D, Perrucci MG, Gratta CD, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci 104:13170–13175CrossRefGoogle Scholar
  46. Martino AD, Ghaffari M, Curchack J, Reiss P, Hyde C, Vannucci M, Petkova E, Klein DF, Castellanos FX (2008) Decomposing intra-subject variability in children with attention-deficit/hyperactivity disorder. Biol Psychiatry 64:607–614CrossRefGoogle Scholar
  47. Mhuircheartaigh RN, Warnaby C, Rogers R, Jbabdi S, Tracey I (2013) Slow-wave activity saturation and thalamocortical isolation during propofol anesthesia in humans. Sci Transl Med 5:208ra148CrossRefGoogle Scholar
  48. Michaloudis D, Kochiadakis G, Georgopoulou G, Fraidakis O, Chlouverakis G, Petrou A, Pollard BJ (1998) The influence of premedication on heart rate variability. Anaesthesia 53:446–453CrossRefGoogle Scholar
  49. Mitra PP, Pesaran B (1999) Analysis of dynamic brain imaging data. Biophys J 76:691–708CrossRefGoogle Scholar
  50. Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. NeuroImage 20:145–158CrossRefGoogle Scholar
  51. Moosmann M, Schönfelder VH, Specht K, Scheeringa R, Nordby H, Hugdahl K (2009) Realignment parameter-informed artefact correction for simultaneous EEG-fMRI recordings. NeuroImage 45:1144–1150CrossRefGoogle Scholar
  52. Musso F, Brinkmeyer J, Ecker D, London MK, Thieme G, Warbrick T, Wittsack H-J, Saleh A, Greb W, de Boer P, Winterer G (2011) Ketamine effects on brain function — simultaneous fMRI/EEG during a visual oddball task. NeuroImage 58:508–525CrossRefGoogle Scholar
  53. Muthukumaraswamy SD, Shaw AD, Jackson LE, Hall JE, Singh KD, Saxena N (2015) Evidence that subanaesthetic doses of ketamine cause sustained disruptions of NMDA and AMPA-mediated frontoparietal connectivity in humans. J Neurosci 35:11694–11706CrossRefGoogle Scholar
  54. Nathan PJ, Phan KL, Harmer CJ, Mehta MA, Bullmore ET (2014) Increasing pharmacological knowledge about human neurological and psychiatric disorders through functional neuroimaging and its application in drug discovery. Curr Opin Pharmacol 14:54–61CrossRefGoogle Scholar
  55. Nunez PL, Silberstein RB, Cadusch PJ, Wijesinghe RS, Westdorp AF, Srinivasan R (1994) A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging. Electroencephalogr Clin Neurophysiol 90:40–57CrossRefGoogle Scholar
  56. Nutt D, Wilson S, Lingford-Hughes A, Myers J, Papadopoulos A, Muthukumaraswamy S (2015) Differences between magnetoencephalographic (MEG) spectral profiles of drugs acting on GABA at synaptic and extrasynaptic sites: a study in healthy volunteers. Neuropharmacology 88:155–163CrossRefGoogle Scholar
  57. Oostendorp TF, Oosterom A (1989) Source parameter estimation in inhomogeneous volume conductors of arbitrary shape. IEEE Trans Biomed Eng 36:382–391CrossRefGoogle Scholar
  58. Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:1–9CrossRefGoogle Scholar
  59. Platten HP, Schweizer E, Dilger K, Mikus G, Klotz U (1998) Pharmacokinetics and the pharmacodynamic action of midazolam in young and elderly patients undergoing tooth extraction. Clin Pharmacol Ther 63:552–560CrossRefGoogle Scholar
  60. Portnova GV, Tetereva A, Balaev V, Atanov M, Skiteva L, Ushakov V, Ivanitsky A, Martynova O (2018) Correlation of BOLD signal with linear and nonlinear patterns of EEG in resting state EEG-informed fMRI. Front Hum Neurosci 11:654CrossRefGoogle Scholar
  61. Rao J-S, Liu Z, Zhao C, Wei R-H, Zhao W, Tian P-Y, Zhou X, Yang Z-Y, Li X-G (2017) Ketamine changes the local resting-state functional properties of anesthetized-monkey brain. Magn Reson Imaging 43:144–150CrossRefGoogle Scholar
  62. Reinsel RA, Veselis RA, Dnistrian AM, Feshchenko VA, Beattie BJ, Duff MR (2000) Midazolam decreases cerebral blood flow in the left prefrontal cortex in a dose-dependent fashion. Int J Neuropsychopharmacol 3:117–127CrossRefGoogle Scholar
  63. Rivolta D, Heidegger T, Scheller B, Sauer A, Schaum M, Birkner K, Singer W, Wibral M, Uhlhaas PJ (2015) Ketamine dysregulates the amplitude and connectivity of high-frequency oscillations in cortical–subcortical networks in humans: evidence from resting-state magnetoencephalography-recordings. Schizophr Bull 41:1105–1114CrossRefGoogle Scholar
  64. Salvador R, Martínez A, Pomarol-Clotet E, Gomar J, Vila F, Sarró S, Capdevila A, Bullmore E (2008) A simple view of the brain through a frequency-specific functional connectivity measure. NeuroImage 39:279–289CrossRefGoogle Scholar
  65. Schartner MM, Carhart-Harris RL, Barrett AB, Seth AK, Muthukumaraswamy SD (2017) Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin. Sci Rep 7:46421CrossRefGoogle Scholar
  66. Schleiger E, Sheikh N, Rowland T, Wong A, Read S, Finnigan S (2014) Frontal EEG delta/alpha ratio and screening for post-stroke cognitive deficits: the power of four electrodes. Int J Psychophysiol 94:19–24CrossRefGoogle Scholar
  67. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155CrossRefGoogle Scholar
  68. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44:83–98CrossRefGoogle Scholar
  69. Song X-W, Dong Z-Y, Long X-Y, Li S-F, Zuo X-N, Zhu C-Z, He Y, Yan C-G, Zang Y-F (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6:e25031CrossRefGoogle Scholar
  70. Sumner RL, McMillan RL, Shaw AD, Singh KD, Sundram F, Muthukumaraswamy SD (2018) Peak visual gamma frequency is modified across the healthy menstrual cycle. Hum Brain Mapp 39:3187–3202CrossRefGoogle Scholar
  71. Tyvaert L, LeVan P, Grova C, Dubeau F, Gotman J (2008) Effects of fluctuating physiological rhythms during prolonged EEG-fMRI studies. Clin Neurophysiol 119:2762–2774CrossRefGoogle Scholar
  72. Veen BDV, Drongelen WV, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44:867–880CrossRefGoogle Scholar
  73. Veselis RAMD, Reinsel R, Alagesan RMD, Heino RMD, Bedford RFMD (1991) The EEC as a monitor of midazolam amnesia: changes in power and topography as a function of amnesic state. Anesthesiology 74:866–874CrossRefGoogle Scholar
  74. Vulliemoz S, Carmichael DW, Rosenkranz K, Diehl B, Rodionov R, Walker MC, McEvoy AW, Lemieux L (2011) Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans. NeuroImage 54:182–190CrossRefGoogle Scholar
  75. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE (2014) Permutation inference for the general linear model. NeuroImage 92:381–397CrossRefGoogle Scholar
  76. Wong DF, Tauscher J, Gründer G (2009) The role of imaging in proof of concept for CNS drug discovery and development. Neuropsychopharmacology 34:187–203CrossRefGoogle Scholar
  77. Yan CG, Craddock RC, Zuo XN, Zang YF, Milham MP (2013) Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage 80:246–262CrossRefGoogle Scholar
  78. Zang Y-F, He Y, Zhu C-Z, Cao Q-J, Sui M-Q, Liang M, Tian L-X, Jiang T-Z, Wang Y-F (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development 29:83–91CrossRefGoogle Scholar
  79. Zou Q-H, Zhu C-Z, Yang Y, Zuo X-N, Long X-Y, Cao Q-J, Wang Y-F, Zang Y-F (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172:137–141CrossRefGoogle Scholar
  80. Zuo X-N, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX, Biswal BB, Milham MP (2010) The oscillating brain: complex and reliable. NeuroImage 49:1432–1445CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anna Forsyth
    • 1
  • Rebecca McMillan
    • 1
  • Doug Campbell
    • 2
  • Gemma Malpas
    • 2
  • Elizabeth Maxwell
    • 2
  • Jamie Sleigh
    • 3
  • Juergen Dukart
    • 4
  • Joerg F Hipp
    • 4
  • Suresh D Muthukumaraswamy
    • 1
    Email author
  1. 1.School of Pharmacy, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
  2. 2.Department of AnaesthesiologyAuckland District Health BoardAucklandNew Zealand
  3. 3.Department of Anaesthesiology, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
  4. 4.Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation CenterF Hoffman La RocheBaselSwitzerland

Personalised recommendations