Advertisement

Psychopharmacology

, Volume 236, Issue 1, pp 313–320 | Cite as

Neural circuits for a top-down control of fear and extinction

  • Roger Marek
  • Yajie Sun
  • Pankaj SahEmail author
Review

Abstract

Fear learning and extinction are controlled by the activity of three interconnected regions: the amygdala, hippocampus, and prefrontal cortex. Of these, the medial prefrontal cortex modulates specific aspects in fear and extinction via a top-down regulation. In recent years, extensive progress has been made in our understanding of the neural circuits that mediate fear-related behaviors and their modulation by ascending systems. The development of new experimental techniques is now revealing the details of the intrinsic circuits within these structures as well as the connections between them. Here, we highlight recent advances in our understanding of how the prefrontal cortex may mediate such a top-down regulation.

Keywords

Neural circuits Fear Learning Memory Neuromodulation 

Notes

Funding information

This work was supported by grants from the Australian Research Council (CE140100007) and National Health and Medical Research Council to P.S.

References

  1. An B, Kim J, Park K, Lee S, Song S, Choi S (2017) Amount of fear extinction changes its underlying mechanisms. eLife 6:e25224CrossRefGoogle Scholar
  2. Ballinger EC, Ananth M, Talmage DA, Role LW (2016) Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91:1199–1218CrossRefGoogle Scholar
  3. Bandyopadhyay S, Hablitz JJ (2007) Dopaminergic modulation of local network activity in rat prefrontal cortex. J Neurophysiol 97:4120–4128CrossRefGoogle Scholar
  4. Bloem B, Schoppink L, Rotaru DC, Faiz A, Hendriks P, Mansvelder HD, de Berg W, Wouterlood FG (2014) Topographic mapping between basal forebrain cholinergic neurons and the medial prefrontal cortex in mice. J Neurosci 34:16234–16246CrossRefGoogle Scholar
  5. Bloodgood DW, Sugam JA, Holmes A, Kash TL (2018) Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Transl Psychiatry 8:60CrossRefGoogle Scholar
  6. Burns SM, Wyss MJ (1985) The involvement of the anterior cingulate cortex in blood pressure control. Brain Res 340(1):71–77Google Scholar
  7. Burgos Robles A, Vidalgonzalez I, Santini E, Quirk G (2007) Consolidation of fear extinction requires nmda receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 53:871–880CrossRefGoogle Scholar
  8. Burgos-Robles A, Kimchi EY, Izadmehr EM, Porzenheim MJ, Ramos-Guasp WA, Nieh EH, Felix-Ortiz AC, Namburi P, Leppla CA, Presbrey KN, Anandalingam KK, Pagan-Rivera PA, Anahtar M, Beyeler A, Tye KM (2017) Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment. Nat Neurosci 20:824–835CrossRefGoogle Scholar
  9. Carlén M (2017) What constitutes the prefrontal cortex? Science 358:478–482CrossRefGoogle Scholar
  10. Chandler D, Waterhouse BD (2012) Evidence for broad versus segregated projections from cholinergic and noradrenergic nuclei to functionally and anatomically discrete subregions of prefrontal cortex. Front Behav Neurosci 6:9CrossRefGoogle Scholar
  11. Chandler DJ, Lamperski CS, Waterhouse BD (2013) Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex. Brain Res 1522:38–58CrossRefGoogle Scholar
  12. Chen G (2004) Potentiation of nmda receptor currents by dopamine d1 receptors in prefrontal cortex. Proc Natl Acad Sci 101:2596–2600CrossRefGoogle Scholar
  13. Corcoran KA, Quirk GJ (2007) Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J Neurosci 27:840–844CrossRefGoogle Scholar
  14. Dejean C, Courtin J, Karalis N, Chaudun F, Wurtz H, Bienvenu TCM, Herry C (2016) Prefrontal neuronal assemblies temporally control fear behaviour. Nature 535:420–424CrossRefGoogle Scholar
  15. Delgado MR, Nearing KI, Ledoux JE, Phelps EA (2008) Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron 59:829–838CrossRefGoogle Scholar
  16. Do-Monte FH, Manzano-Nieves G, Quiñones-Laracuente K, Ramos-Medina L, Quirk GJ (2015) Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neuosci 35:3607–3615CrossRefGoogle Scholar
  17. Eippert F, Gamer M, Büchel C (2012) Neurobiological mechanisms underlying the blocking effect in aversive learning. J Neuosci 32:13164–13176CrossRefGoogle Scholar
  18. Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15:85–93CrossRefGoogle Scholar
  19. Fanselow MS, Poulos AM (2005) The neuroscience of mammalian associative learning. Annu Rev Psychol 56:207–234CrossRefGoogle Scholar
  20. Finlay JM, Zigmond MJ, Abercrombie ED (1995) Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience 64:619–628CrossRefGoogle Scholar
  21. Floresco SB, Tse MT (2007) Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway. J Neurosci 27:2045–2057CrossRefGoogle Scholar
  22. Gabbott PLA, Warner TA, Jays PRL, Bacon SJ (2003) Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res 993:59–71CrossRefGoogle Scholar
  23. Gazzaley A, Nobre AC (2012) Top-down modulation: bridging selective attention and working memory. Trends Cogn Sci 16:129–135CrossRefGoogle Scholar
  24. Goosens KA, Maren S (2004) Nmda receptors are essential for the acquisition, but not expression, of conditional fear and associative spike firing in the lateral amygdala. Eur J Neurosci 20:537–548CrossRefGoogle Scholar
  25. Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW (2000) Enhanced and impaired attentional performance after infusion of d1 dopaminergic receptor agents into rat prefrontal cortex. J Neuosci 20:1208–1215CrossRefGoogle Scholar
  26. Gritton HJ, Howe WM, Mallory CS, Hetrick VL, Berke JD, Sarter M (2016) Cortical cholinergic signaling controls the detection of cues. Proc Natl Acad Sci U S A 113:E1089–E1097CrossRefGoogle Scholar
  27. Guillem K, Bloem B, Poorthuis RB, Loos M, Smit AB, Maskos U, Spijker S, Mansvelder HD (2011) Nicotinic acetylcholine receptor beta 2 subunits in the medial prefrontal cortex control attention. Science 333:888–891CrossRefGoogle Scholar
  28. Hasselmo ME, Giocomo LM (2006) Cholinergic modulation of cortical function. J Mol Neurosci 30:133–135CrossRefGoogle Scholar
  29. Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579CrossRefGoogle Scholar
  30. Hobin JA, Ji J, Maren S (2006) Ventral hippocampal muscimol disrupts context-specific fear memory retrieval after extinction in rats. Hippocampus 16:174–182CrossRefGoogle Scholar
  31. Hoover W, Vertes R (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149–179CrossRefGoogle Scholar
  32. Howe WM, Ji JZ, Parikh V, Williams S, Mocaer E, Trocme-Thibierge C, Sarter M (2010) Enhancement of attentional performance by selective stimulation of alpha 4 beta 2*nachrs: underlying cholinergic mechanisms. Neuropsychopharmacology 35:1391–1401CrossRefGoogle Scholar
  33. Inoue T, Tsuchiya K, Koyama T (1994) Regional changes in dopamine and serotonin activation with various intensity of physical and psychological stress in the rat brain. Pharmacol Biochem Behav 49:911–920CrossRefGoogle Scholar
  34. Ji XH, Cao XH, Zhang CL, Feng ZJ, Zhang XH, Ma L, Li BM (2007) Pre- and postsynaptic -adrenergic activation enhances excitatory synaptic transmission in layer v/vi pyramidal neurons of the medial prefrontal cortex of rats. Cereb Cortex 18:1506–1520CrossRefGoogle Scholar
  35. LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fmri study. Neuron 20:937–945CrossRefGoogle Scholar
  36. LeDoux JE (1993) Emotional memory systems in the brain. Behav Brain Res 58:69–79CrossRefGoogle Scholar
  37. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184CrossRefGoogle Scholar
  38. Lee YK, Choi J-S (2012) Inactivation of the medial prefrontal cortex interferes with the expression but not the acquisition of differential fear conditioning in rats. Exp Neurobiol 21:23–29CrossRefGoogle Scholar
  39. Likhtik E, Popa D, Apergis-Schoute J, Fidacaro GA, Pare D (2008) Amygdala intercalated neurons are required for expression of fear extinction. Nature 454:642–645CrossRefGoogle Scholar
  40. Little JP, Carter AG (2013) Synaptic mechanisms underlying strong reciprocal connectivity between the medial prefrontal cortex and basolateral amygdala. J Neuosci 33:15333–15342CrossRefGoogle Scholar
  41. Malenka RC, Nicoll RA (1993) Nmda-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16:521–527CrossRefGoogle Scholar
  42. Marek R, Strobel C, Bredy TW, Sah P (2013) The amygdala and medial prefrontal cortex: partners in the fear circuit. J Physiol 591:2381–2391CrossRefGoogle Scholar
  43. Marek R, Jin J, Goode TD, Giustino TF, Wang Q, Acca GM, Holehonnur R, Ploski JE, Fitzgerald PJ, Lynagh T, Lynch JW, Maren S, Sah P (2018a) Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nat Neurosci 21:384–392  https://doi.org/10.1038/s41593-018-0073-9 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Marek R, Xu L, Sullivan Robert KP, Sah P (2018b) Excitatory connections between the prelimbic and infralimbic medial prefrontal cortex show a role for the prelimbic cortex in fear extinction. Nat Neurosci 21:654–658Google Scholar
  45. Maren S (2001) Neurobiology of pavlovian fear conditioning. Annu Rev Neurosci 24:897–931CrossRefGoogle Scholar
  46. Mark GP, Rada PV, Shors TJ (1996) Inescapable stress enhances extracellular acetylcholine in the rat hippocampus and prefrontal cortex but not the nucleus accumbens or amygdala. Neuroscience 74:767–774CrossRefGoogle Scholar
  47. Marowsky A, Yanagawa Y, Obata K, Vogt KE (2005) A specialized subclass of interneurons mediates dopaminergic facilitation of amygdala function. Neuron 48:1025–1037CrossRefGoogle Scholar
  48. Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:70–74CrossRefGoogle Scholar
  49. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202CrossRefGoogle Scholar
  50. Miller KD, Pinto DJ, Simons DJ (2001) Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Curr Opin Neurobiol 11:488–497CrossRefGoogle Scholar
  51. Miserendino MJD, Sananes CB, Melia KR, Davis M (1990) Blocking of acquisition but not expression of conditioned fear-potentiated startle by nmda antagonists in the amygdala. Nature 345:716–718CrossRefGoogle Scholar
  52. Morris JS, Frith CD, Perrett DI, Rowland D, Young AW, Calder AJ, Dolan RJ (1996) A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383:812–815CrossRefGoogle Scholar
  53. Mueller D, Porter JT, Quirk GJ (2008) Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction. J Neurosci 28:369–375CrossRefGoogle Scholar
  54. Orsini CA, Kim JH, Knapska E, Maren S (2011) Hippocampal and prefrontal projections to the basal amygdala mediate contextual regulation of fear after extinction. J Neuosci 31:17269–17277CrossRefGoogle Scholar
  55. Pape H-C, Pare D (2010) Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90:419–463CrossRefGoogle Scholar
  56. Pare D, Quirk GJ, Ledoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92:1–9CrossRefGoogle Scholar
  57. Parent MA, Wang L, Su J, Netoff T, Yuan L-L (2009) Identification of the hippocampal input to medial prefrontal cortex in vitro. Cereb Cortex 20:393–403CrossRefGoogle Scholar
  58. Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56:141–154CrossRefGoogle Scholar
  59. Pennartz CMA (1995) The ascending neuromodulatory systems in learning by reinforcement: comparing computational conjectures with experimental findings. Brain Res Rev 21:219–245CrossRefGoogle Scholar
  60. Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76:116–129CrossRefGoogle Scholar
  61. Pinard CR, Mascagni F, McDonald AJ (2012) Medial prefrontal cortical innervation of the intercalated nuclear region of the amygdala. Neuroscience 205:112–124CrossRefGoogle Scholar
  62. Pitkanen A, Pikkarainen M, Nurminen N, Ylinen A (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci 911:369–391CrossRefGoogle Scholar
  63. Poorthuis RB, Bloem B, Schak B, Wester J, de Kock CPJ, Mansvelder HD (2013) Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors. Cereb Cortex 23:148–161CrossRefGoogle Scholar
  64. Quirk GJ, Mueller D (2007) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72CrossRefGoogle Scholar
  65. Radley JJ, Williams B, Sawchenko PE (2008) Noradrenergic innervation of the dorsal medial prefrontal cortex modulates hypothalamo-pituitary-adrenal responses to acute emotional stress. J Neurosci 28:5806–5816CrossRefGoogle Scholar
  66. Royer S, Martina M, Pare D (2000) Polarized synaptic interactions between intercalated neurons of the amygdala. J Neurophysiol 83:3509–3518CrossRefGoogle Scholar
  67. Sah P, Faber ESL, Lopez De Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83:803–834CrossRefGoogle Scholar
  68. Santini E, Sepulveda-Orengo M, Porter JT (2012) Muscarinic receptors modulate the intrinsic excitability of infralimbic neurons and consolidation of fear extinction. Neuropsychopharmacology 37:2047–2056CrossRefGoogle Scholar
  69. Seamans JK (2000) Dopamine d1/d5 receptor modulation of excitatory synaptic inputs to layer v prefrontal cortex neurons. Proc Natl Acad Sci 98:301–306CrossRefGoogle Scholar
  70. Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ (2001) Dopamine d1/d5 receptor modulation of excitatory synaptic inputs to layer v prefrontal cortex neurons. Proc Natl Acad Sci 98:301–306CrossRefGoogle Scholar
  71. Senn V, Wolff Steffen BE, Herry C, Grenier F, Ehrlich I, Gründemann J, Fadok Jonathan P, Müller C, Letzkus Johannes J, Lüthi A (2014) Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81:428–437CrossRefGoogle Scholar
  72. Sierra-Mercado D Jr, Corcoran KA, Lebron-Milad K, Quirk GJ (2006) Inactivation of the ventromedial prefrontal cortex reduces expression of conditioned fear and impairs subsequent recall of extinction. Eur J Neurosci 24:1751–1758CrossRefGoogle Scholar
  73. Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36:529–538CrossRefGoogle Scholar
  74. Strobel C, Marek R, Gooch Helen M, Sullivan Robert KP, Sah P (2015) Prefrontal and auditory input to intercalated neurons of the amygdala. Cell Rep 10:1435–1442CrossRefGoogle Scholar
  75. Sun X (2005) Dopamine receptor stimulation modulates ampa receptor synaptic insertion in prefrontal cortex neurons. J Neurosci 25:7342–7351CrossRefGoogle Scholar
  76. Tang J, Ko S, Ding HK, Qiu CS, Calejesan AA, Zhuo M (2005) Pavlovian fear memory induced by activation in the anterior cingulate cortex. Mol Pain 1:1744–8069Google Scholar
  77. van Aerde KI, Heistek TS, Mansvelder HD (2008) Prelimbic and infralimbic prefrontal cortex interact during fast network oscillations. PLoS One 3:e2725CrossRefGoogle Scholar
  78. Van De Werd HJ, Rajkowska G, Evers P, Uylings HB (2010) Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct 214:339–353CrossRefGoogle Scholar
  79. Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58CrossRefGoogle Scholar
  80. Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 13:728–733CrossRefGoogle Scholar
  81. Yau JO-Y, McNally GP (2015) Pharmacogenetic excitation of dorsomedial prefrontal cortex restores fear prediction error. J Neuosci 35:74–83CrossRefGoogle Scholar
  82. Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8:577–581CrossRefGoogle Scholar
  83. Zhong P, Liu W, Gu Z, Yan Z (2008) Serotonin facilitates long-term depression induction in prefrontal cortex via p38 mapk/rab5-mediated enhancement of ampa receptor internalization. J Physiol 586:4465–4479CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia

Personalised recommendations