, Volume 236, Issue 1, pp 399–406 | Cite as

Prefrontal circuits signaling active avoidance retrieval and extinction

  • Freddyson J. Martínez-RiveraEmail author
  • Christian Bravo-Rivera
  • Coraly D. Velázquez-Díaz
  • Marlian Montesinos-Cartagena
  • Gregory J. Quirk
Original Investigation



Neurons in PL and IL project densely to two areas implicated in active avoidance: the basolateral amygdala (BLA) and the ventral striatum (VS). We therefore combined c-Fos immunohistochemistry with retrograde tracers to characterize signaling in platform-mediated active avoidance.


Male rats  were infused with retrograde tracers (CTB, FB) into basolateral amygdala and ventral striatum and conditioned to avoid tone-signaled footshocks by stepping onto a nearby platform. In a subsequent test session, rats received either 2 unreinforced tones (avoidance retrieval) or 15 unreinforced tones (avoidance extinction) followed by analysis of c-Fos combined with fluorescent imaging of retrograde tracers.


Retrieval of avoidance did not activate IL neurons, but did activate PL neurons projecting to BLA, and to a lesser extent VS. Extinction of avoidance activated IL neurons projecting to both BLA and VS, as well as PL neurons projecting to VS.


Our observation that avoidance retrieval is signaled by PL projections to BLA suggests that PL may modulate VS indirectly via BLA, and agrees with other findings implicating BLA in active avoidance. Less expected was the signaling of extinction via PL inputs to VS, which may converge with IL inputs to VS to inhibit expression of avoidance.


Prelimbic Infralimbic Amygdala Ventral striatum c-Fos Retrograde tracers 



Authors thank Marcos J. Sánchez-Navarro, Estefanía M. Medina-Colón, Angelica Minier-Toribio, Ciorana Román-Ortiz, and Kelvin Quiñones-Laracuente for their technical assistant.

Funding information

This work was supported by NIH grant R36-MH102968 to CB-R, NIH grants P50-MH086400 and R37-MH058883 to GJQ, and the University of Puerto Rico President’s Office.

Compliance with ethical standards

All procedures were approved by the Institutional Animal Care and Use Committee of the University of Puerto Rico School of Medicine, and the Association for Assessment and Accreditation of Laboratory Animal Care.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Arruda-Carvalho M, Clem RL (2015) Prefrontal-amygdala fear networks come into focus. Front Syst Neurosci 9:145CrossRefGoogle Scholar
  2. Augur IF, Wyckoff AR, Aston-Jones G, Kalivas PW, Peters J (2016) Chemogenetic activation of an extinction neural circuit reduces cue-induced reinstatement of cocaine seeking. J Neurosci 36:10174–10180CrossRefGoogle Scholar
  3. Barros VN, Mundim M, Galindo LT, Bittencourt S, Porcionatto M, Mello LE (2015) The pattern of c-Fos expression and its refractory period in the brain of rats and monkeys. Front Cell Neurosci 9:72CrossRefGoogle Scholar
  4. Bloodgood DW, Sugam JA, Holmes A, Kash TL (2018) Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Transl Psychiatry 8:60CrossRefGoogle Scholar
  5. Bravo-Rivera C, Roman-Ortiz C, Brignoni-Perez E, Sotres-Bayon F, Quirk GJ (2014) Neural structures mediating expression and extinction of platform-mediated avoidance. J Neurosci 34:9736–9742CrossRefGoogle Scholar
  6. Bravo-Rivera C, Diehl MM, Roman-Ortiz C, Rodriguez-Romaguera J, Rosas-Vidal LE, Bravo-Rivera H, Quinones-Laracuente K, Do-Monte FH (2015a) Long-range GABAergic neurons in the prefrontal cortex modulate behavior. J Neurophysiol 114:1357–1359CrossRefGoogle Scholar
  7. Bravo-Rivera C, Roman-Ortiz C, Montesinos-Cartagena M, Quirk GJ (2015b) Persistent active avoidance correlates with activity in prelimbic cortex and ventral striatum. Front Behav Neurosci 9:184CrossRefGoogle Scholar
  8. Bukalo O, Pinard CR, Silverstein S, Brehm C, Hartley ND, Whittle N, Colacicco G, Busch E, Patel S, Singewald N, Holmes A (2015) Prefrontal inputs to the amygdala instruct fear extinction memory formation. Sci Adv 1:e1500251CrossRefGoogle Scholar
  9. Cheriyan J, Kaushik MK, Ferreira AN, Sheets PL (2016) Specific targeting of the basolateral amygdala to projectionally defined pyramidal neurons in prelimbic and infralimbic cortex. eNeuro 3Google Scholar
  10. Cho JH, Deisseroth K, Bolshakov VY (2013) Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 80:1491–1507CrossRefGoogle Scholar
  11. Choi JS, Cain CK, LeDoux JE (2010) The role of amygdala nuclei in the expression of auditory signaled two-way active avoidance in rats. Learn Mem 17:139–147CrossRefGoogle Scholar
  12. Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ (1995) Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64:477–505CrossRefGoogle Scholar
  13. Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784CrossRefGoogle Scholar
  14. Diehl MM, Bravo-Rivera C, Rodriguez-Romaguera J, Pagan-Rivera PA, Burgos-Robles A, Roman-Ortiz C, Quirk GJ (2018) Active avoidance requires inhibitory signaling in the rodent prelimbic prefrontal cortex. Elife 7Google Scholar
  15. Do-Monte FH, Manzano-Nieves G, Quinones-Laracuente K, Ramos-Medina L, Quirk GJ (2015) Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci 35:3607–3615CrossRefGoogle Scholar
  16. Dragunow M, Faull R (1989) The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29:261–265CrossRefGoogle Scholar
  17. Floresco SB, Block AE, Tse MT (2008) Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav Brain Res 190:85–96CrossRefGoogle Scholar
  18. Fragale JE, Khariv V, Gregor DM, Smith IM, Jiao X, Elkabes S, Servatius RJ, Pang KC, Beck KD (2016) Dysfunction in amygdala-prefrontal plasticity and extinction-resistant avoidance: a model for anxiety disorder vulnerability. Exp Neurol 275(Pt 1):59–68CrossRefGoogle Scholar
  19. Gabbott PL, Warner TA, Jays PR, Salway P, Busby SJ (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492:145–177CrossRefGoogle Scholar
  20. Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, Lammel S, Mirzabekov JJ, Airan RD, Zalocusky KA, Tye KM, Anikeeva P, Malenka RC, Deisseroth K (2014) Natural neural projection dynamics underlying social behavior. Cell 157:1535–1551CrossRefGoogle Scholar
  21. Hirschberg S, Li Y, Randall A, Kremer EJ, Pickering AE (2017) Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. Elife 6Google Scholar
  22. Kesner RP, Churchwell JC (2011) An analysis of rat prefrontal cortex in mediating executive function. Neurobiol Learn Mem 96:417–431CrossRefGoogle Scholar
  23. Lazaro-Munoz G, LeDoux JE, Cain CK (2010) Sidman instrumental avoidance initially depends on lateral and basal amygdala and is constrained by central amygdala-mediated Pavlovian processes. Biol Psychiatry 67:1120–1127CrossRefGoogle Scholar
  24. LeDoux JE, Moscarello J, Sears R, Campese V (2017) The birth, death and resurrection of avoidance: a reconceptualization of a troubled paradigm. Mol Psychiatry 22:24–36CrossRefGoogle Scholar
  25. Lee AT, Vogt D, Rubenstein JL, Sohal VS (2014) A class of GABAergic neurons in the prefrontal cortex sends long-range projections to the nucleus accumbens and elicits acute avoidance behavior. J Neurosci 34:11519–11525CrossRefGoogle Scholar
  26. Marek R, Xu L, Sullivan RKP, Sah P (2018) Excitatory connections between the prelimbic and infralimbic medial prefrontal cortex show a role for the prelimbic cortex in fear extinction. Nat Neurosci 21:654–658CrossRefGoogle Scholar
  27. Martinez RC, Gupta N, Lazaro-Munoz G, Sears RM, Kim S, Moscarello JM, LeDoux JE, Cain CK (2013) Active vs. reactive threat responding is associated with differential c-Fos expression in specific regions of amygdala and prefrontal cortex. Learn Mem 20:446–452CrossRefGoogle Scholar
  28. Martinez-Rivera FJ, Rodriguez-Romaguera J, Lloret-Torres ME, Do Monte FH, Quirk GJ, Barreto-Estrada JL (2016) Bidirectional modulation of extinction of drug seeking by deep brain stimulation of the ventral striatum. Biol Psychiatry 80:682–690CrossRefGoogle Scholar
  29. Moscarello JM, LeDoux JE (2013) Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions. J Neurosci 33:3815–3823CrossRefGoogle Scholar
  30. Mueller D, Porter JT, Quirk GJ (2008) Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction. J Neurosci 28:369–375CrossRefGoogle Scholar
  31. Mueller D, Bravo-Rivera C, Quirk GJ (2010) Infralimbic D2 receptors are necessary for fear extinction and extinction-related tone responses. Biol Psychiatry 68:1055–1060CrossRefGoogle Scholar
  32. Murugan M, Jang HJ, Park M, Miller EM, Cox J, Taliaferro JP, Parker NF, Bhave V, Hur H, Liang Y, Nectow AR, Pillow JW, Witten IB (2017) Combined social and spatial coding in a descending projection from the prefrontal cortex. Cell 171:1663–1677 e16CrossRefGoogle Scholar
  33. Oualian C, Gisquet-Verrier P (2010) The differential involvement of the prelimbic and infralimbic cortices in response conflict affects behavioral flexibility in rats trained in a new automated strategy-switching task. Learn Mem 17:654–668CrossRefGoogle Scholar
  34. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th ed. edn. Elsevier, AmsterdamGoogle Scholar
  35. Pendyam S, Bravo-Rivera C, Burgos-Robles A, Sotres-Bayon F, Quirk GJ, Nair SS (2013) Fear signaling in the prelimbic-amygdala circuit: a computational modeling and recording study. J Neurophysiol 110:844–861CrossRefGoogle Scholar
  36. Peters J, De Vries TJ (2013) D-cycloserine administered directly to infralimbic medial prefrontal cortex enhances extinction memory in sucrose-seeking animals. Neuroscience 230:24–30CrossRefGoogle Scholar
  37. Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28:6046–6053CrossRefGoogle Scholar
  38. Peters J, Kalivas PW, Quirk GJ (2009) Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem 16:279–288CrossRefGoogle Scholar
  39. Ramirez F, Moscarello JM, LeDoux JE, Sears RM (2015) Active avoidance requires a serial basal amygdala to nucleus accumbens shell circuit. J Neurosci 35:3470–3477CrossRefGoogle Scholar
  40. Rich EL, Shapiro M (2009) Rat prefrontal cortical neurons selectively code strategy switches. J Neurosci 29:7208–7219CrossRefGoogle Scholar
  41. Rosas-Vidal LE, Do-Monte FH, Sotres-Bayon F, Quirk GJ (2014) Hippocampal--prefrontal BDNF and memory for fear extinction. Neuropsychopharmacology 39:2161–2169CrossRefGoogle Scholar
  42. Rosas-Vidal LE, Lozada V, Cantres-Rosario Y, Vega-Medina A, Melendez L, Quirk GJ (2018) Alteration of BDNF in the medial prefrontal cortex and the ventral hippocampus impairs extinction of avoidance. NeuropsychopharmacologyGoogle Scholar
  43. Santini E, Quirk GJ, Porter JT (2008) Fear conditioning and extinction differentially modify the intrinsic excitability of infralimbic neurons. J Neurosci 28:4028–4036CrossRefGoogle Scholar
  44. Senn V, Wolff SB, Herry C, Grenier F, Ehrlich I, Grundemann J, Fadok JP, Muller C, Letzkus JJ, Luthi A (2014) Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81:428–437CrossRefGoogle Scholar
  45. Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36:529–538CrossRefGoogle Scholar
  46. Sotres-Bayon F, Sierra-Mercado D, Pardilla-Delgado E, Quirk GJ (2012) Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron 76:804–812CrossRefGoogle Scholar
  47. Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58CrossRefGoogle Scholar
  48. Yu J, Yan Y, Li KL, Wang Y, Huang YH, Urban NN, Nestler EJ, Schluter OM, Dong Y (2017) Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration. Proc Natl Acad Sci U S A 114:E8750–E8759CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Freddyson J. Martínez-Rivera
    • 1
    Email author
  • Christian Bravo-Rivera
    • 2
  • Coraly D. Velázquez-Díaz
    • 1
  • Marlian Montesinos-Cartagena
    • 1
  • Gregory J. Quirk
    • 1
  1. 1.Departments of Psychiatry and Anatomy & Neurobiology, School of MedicineUniversity of Puerto RicoSan JuanPuerto Rico
  2. 2.Neuroscience DivisionCold Spring Harbor LaboratoryCold Spring HarborUSA

Personalised recommendations