Advertisement

Predicting extinction phenotype to optimize fear reduction

  • M. H. Monfils
  • H. J. Lee
  • N. E. Keller
  • R. F. Roquet
  • S. Quevedo
  • L. Agee
  • R. Cofresi
  • J. Shumake
Original Investigation
  • 95 Downloads

Abstract

Fear conditioning is widely employed to study dysregulations of the fear system. The repeated presentation of a conditioned stimulus in the absence of a reinforcer leads to a decrease in fear responding—a phenomenon known as extinction. From a translational perspective, identifying whether an individual might respond well to extinction prior to intervention could prove important to treatment outcomes. Here, we test the hypothesis that CO2 reactivity predicts extinction phenotype in rats, and that variability in CO2 reactivity as well as extinction long-term memory (LTM) significantly predicts orexin activity in the lateral hypothalamus (LH). Our results validate a rat model of CO2 reactivity and show that subcomponents of behavioral reactivity following acute CO2 exposure explain a significant portion of the variance in extinction LTM. Furthermore, we show evidence that variability in CO2 reactivity is also significantly predictive of orexin activity in the LH, and that orexin activity, in turn, significantly accounts for LTM variance. Our findings open the possibility that we may be able to use CO2 reactivity as a screening tool to determine if individuals are good candidates for an extinction/exposure-based approach.

Keywords

Extinction phenotype Fear conditioning Fear extinction CO2 Individual differences 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

213_2018_5005_MOESM1_ESM.docx (2.8 mb)
ESM 1 (DOCX 2872 kb)

References

  1. Bush DE, Sotres-Bayon F, LeDoux JE (2007) Individual differences in fear: isolating fear reactivity and fear recovery phenotypes. J Trauma Stress 20:413–422.  https://doi.org/10.1002/jts.20261 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cawley GC, Talbot NL (2010) On over-fitting in model selection and subsequent selection Bias in performance evaluation. J Mach Learn Res 11:2079–2107Google Scholar
  3. Cuccheddu T, Floris S, Serra M, Porceddu ML, Sanna E, Biggio G (1995) Proconflict effect of carbon dioxide inhalation in rats. Life Sci 56:L321–L324.  https://doi.org/10.1016/0024-3205(95)00093-3 CrossRefGoogle Scholar
  4. Crawley J, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13(2):167–170.  https://doi.org/10.1016/0091-3057(80)90067-2 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cunha C, Monfils MH, LeDoux JE (2010) GABAC receptors in the lateral amygdala: a possible novel target for the treatment of fear and anxiety disorders? Front Behav Neurosci 4:6.  https://doi.org/10.3389/neuro.08.006.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Du J, Price MP, Taugher RJ, Grigsby D, Ash JJ, Stark AC, Hossain Saad MZ, Singh K, Mandal J, Wemmie JA, Welsh MJ (2017) Transient acidosis while retrieving a fear-related memory enhances its lability. eLife, 6.  https://doi.org/10.7554/eLife.22564
  7. Elam M, Yao T, Thore P, Svensson TH (1981) Hypercapnia and hypoxia: chemoreceptor-mediated control of locus coeruleus neurons and splanchnic, sympathetic nerves. Brain Res 222(2):373–381.  https://doi.org/10.1016/0006-8993(81)91040-4 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Flores Á, Valls-Comamala V, Costa G, Saravia R, Maldonado R, Berrendero F (2014) The hypocretin/orexin system mediates the extinction of fear memories. Neuropsychopharmacology 39(12):2732–2741.  https://doi.org/10.1038/npp.2014.146 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Flores Á, Herry C, Maldonado R, Berrendero F (2017) Facilitation of contextual fear extinction by orexin-1 receptor antagonism is associated with the activation of specific amygdala cell subpopulations. Int J Neuropsychopharmacol 20(8):654–659.  https://doi.org/10.1093/ijnp/pyx029 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fox J, Weisberg S (2011) An {R} companion to applied regression, second edition. Thousand Oaks CA: sage. In: URL http://socserv.socsci.mcmaster.ca/jfox/Books/Companion Google Scholar
  11. Galatzer-Levy IR, Ankri Y, Freedman S, Israeli-Shalev Y, Roitman P, Gilad M, Shalev AY (2013) Early PTSD symptom trajectories: persistence, recovery, and response to treatment: results from the Jerusalem trauma outreach and prevention study (J-TOPS). PLoS One 8(8):e70084.  https://doi.org/10.1371/journal.pone.0070084 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Johnson PL, Samuels BC, Fitz SD, Lightman SL, Lowry CA, Shekhar A (2012) Activation of the orexin 1 receptor is a critical component of CO2-mediated anxiety and hypertension but not bradycardia. Neuropsychopharmacology 37:1911–1922.  https://doi.org/10.1038/npp.2012.38 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Johnson PL, Fitz SD, Hollis JH, Moratalla R, Lightman SL, Shekhar A, Lowry CA (2011) Induction of c-fos in “panic/defense”-related brain circuits following brief hypercarbic gas exposure. J Psychopharmacol 25:26–36.  https://doi.org/10.1177/0269881109353464 CrossRefGoogle Scholar
  14. Jones CE, Ringuet S, Monfils MH (2013) Learned together, extinguished apart: reducing fear to complex stimuli. Learn Mem 20(12):674–685.  https://doi.org/10.1101/lm.031740.113 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jones CE, Monfils MH (2016) Dominance status predicts social fear transmission in laboratory rats. Anim Cogn 19(6):1051–1069.  https://doi.org/10.1007/s10071-016-1013-2 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lee HJ, Groshek F, Petrovich GD, Cantalini JP, Gallagher M, Holland PC (2005) Role of amygdalo-nigral circuitry in conditioning of a visual stimulus paired with food. J Neurosci 25(15):3881–3888.  https://doi.org/10.1523/JNEUROSCI.0416-05.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lee HJ, Gallagher M, Holland PC (2010) The central amygdala projection to the substantia nigra reflects prediction error information in appetitive conditioning. Learn Mem 17(10):531–538.  https://doi.org/10.1101/lm.1889510 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lee HJ, Haberman RP, Roquet RF, Monfils MH (2016) Extinction and retrieval+ extinction of conditioned fear differentially activate medial prefrontal cortex and amygdala in rats. Front Behav Neurosci 9:369.  https://doi.org/10.3389/fnbeh.2015.00369 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Margraf J, Ehlers A, Roth WT (1986) Biological models of panic disorder and agoraphobia--a review. Behav Res Ther 24(5):553–567.  https://doi.org/10.1016/0005-7967(86)90036-7 CrossRefPubMedPubMedCentralGoogle Scholar
  20. McNally RJ (1999) On the experimental induction of panic. Behav Ther 30(2):331–339.  https://doi.org/10.1016/S0005-7894(99)80012-4 CrossRefGoogle Scholar
  21. Michopoulos V, Powers A, Gillespie CF, Ressler KJ, Jovanovic T (2017) Inflammation in fear-and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology 42(1):254–270.  https://doi.org/10.1038/npp.2016.146 CrossRefGoogle Scholar
  22. Monfils MH, Cowansage KK, Klann E, LeDoux JE (2009) Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324(5929):951–955.  https://doi.org/10.1126/science.1167975 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Nashold BS Jr, Wilson WP, Slaughter DG (1969) Sensations evoked by stimulation in the midbrain of man. J Neurosurg 30:14–24.  https://doi.org/10.3171/jns.1969.30.1.0014 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, Milad MR, Liberzon I (2012) Biological studies of post-traumatic stress disorder. Nat Rev Neurosci 13(11):769–787.  https://doi.org/10.1038/nrn3339 CrossRefPubMedPubMedCentralGoogle Scholar
  25. R Core Team (2016) R: a language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria URL https://www.R-project.org/ Google Scholar
  26. Samuels BC, Zaretsky DV, DiMicco JA (2002) Tachycardia evoked by disinhibition of the dorsomedial hypothalamus in rats is mediated through medullary raphe. J Physiol 538:941–946.  https://doi.org/10.1113/jphysiol.2001.013302 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Schiller D, Kanen JW, LeDoux JE, Monfils MH, Phelps EA (2014) Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement. Proc Natl Acad Sci U S A 110(50):20040–20045.  https://doi.org/10.1073/pnas.1320322110 CrossRefGoogle Scholar
  28. Schwartze D, Barkowski S, Strauss B, Knaevelsrud C, Rosendahl J (2017) Efficacy of group psychotherapy for posttraumatic stress disorder: Systematic review and meta-analysis of randomized controlled trials. Psychother Res:1–17.  https://doi.org/10.1080/10503307.2017.1405168
  29. Sears RM, Fink AE, Wigestrand MB, Farb CR, de Lecea L, Ledoux JE (2013) Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus. Proc Natl Acad Sci U S A 110(50):20260–20265.  https://doi.org/10.1073/pnas.1320325110 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Senn V, Wolff SB, Herry C, Grenier F, Ehrlich I, Gründemann J, Fadok JP, Müller C, Letzkus JJ, Lüthi A (2014) Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81(2):428–437.  https://doi.org/10.1016/j.neuron.2013.11.006 CrossRefGoogle Scholar
  31. Sharko AC, Fadel JR, Kaigler KF, Wilson MA (2017) Activation of orexin/hypocretin neurons is associated with individual differences in cued fear extinction. Physiol Behav 178:93–102.  https://doi.org/10.1016/j.physbeh.2016.10.008 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jason Shumake (2018) beset: Best Subset Predictive Modeling. R package version 0.0.0.9402. https://github.com/jashu/beset
  33. Shumake J, Furgeson-Moreira S, Monfils MH (2014) Predictability and heritability of individual differences in fear learning. Anim Cogn 17(5):1207–1221.  https://doi.org/10.1007/s10071-014-0752-1 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Shumake J, CE J, A A, Monfils MH (2018) Data-driven criteria to assess fear remission and phenotypic variability of extinction in rats. Phil Trans R Soc B 373(1742):20170035.  https://doi.org/10.1098/rstb.2017.0035 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Shekhar A, Katner JS (1995) Dorsomedial hypothalamic gaba regulates anxiety in the social interaction test. Pharmacol Biochem Behav 50:253–258.  https://doi.org/10.1016/0091-3057(94)00307-5 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Taylor J, Tibshirani RJ (2015) Statistical learning and selective inference. Proc Natl Acad Sci U S A 112(25):7629–7634.  https://doi.org/10.1073/pnas.1507583112 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Tedesco V, Roquet RF, DeMis J, Chiamulera C, Monfils MH (2014) Extinction, applied after retrieval of auditory fear memory, selectively increases zinc-finger protein 268 and phosphorylated ribosomal protein S6 expression in prefrontal cortex and lateral amygdala. Neurobiol Learn Mem.  https://doi.org/10.1016/j.nlm.2014.08.015 CrossRefPubMedCentralGoogle Scholar
  38. Telch MJ, Rosenfield D, Lee HJ, Pai A (2012) Emotional reactivity to a single inhalation of 35% carbon dioxide and its association with later symptoms of posttraumatic stress disorder and anxiety in soldiers deployed to Iraq. Arch Gen Psychiatry 69(11):1161–1168.  https://doi.org/10.1001/archgenpsychiatry.2012.8 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Telch MJ, Smits JAJ, Brown M, Dement M, Powers MB, Lee HJ, Pai A (2010) Effects of threat context and cardiac sensitivity on fear responding to a 35% CO2 challenge: a test of the context-sensitivity panic vulnerability model. J Behav Ther Exp Psychiatry 41:365–372.  https://doi.org/10.1016/j.jbtep.2010.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Walker BR, Brizzee BL (1990) Cardiovascular responses to hypoxia and hypercapnia in barodenervated rats. J Appl Physiol 68:678–686.  https://doi.org/10.1152/jappl.1990.68.2.678 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wilent WB, Oh MY, Buetefisch C, Bailes JE, Cantella D, Angle C, Whiting DM (2011) Mapping of microstimulation evoked responses and unit activity patterns in the lateral hypothalamic area recorded in awake humans. Technical note J Neurosurg 115(2):295–300.  https://doi.org/10.3171/2011.3.JNS101574 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yehuda R (2009) Status of glucocorticoid alterations in post-traumatic stress disorder. Ann N Y Acad Sci 1179(1):56–69.  https://doi.org/10.1111/j.1749-6632.2009.04979.x CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of Texas at AustinAustinUSA
  2. 2.Institute for NeuroscienceAustinUSA
  3. 3.Institute for Mental Health ResearchAustinUSA

Personalised recommendations