Advertisement

Psychopharmacology

, Volume 235, Issue 10, pp 3055–3063 | Cite as

An exploration of the aversive properties of 2-deoxy-D-glucose in rats

  • Thomas Horman
  • Maria Fernanda Fernandes
  • Yan Zhou
  • Benjamin Fuller
  • Melissa Tigert
  • Francesco Leri
Original Investigation

Abstract

Hypoglycemia can alter arousal and negatively impact mood. This study tests the hypothesis that acute drops in glucose metabolism cause an aversive state mediated by monoamine activity. In experiment 1, male Sprague-Dawley rats were either food deprived (FD) or pre-fed (PF) and tested on conditioned place avoidance (CPA; biased place conditioning design; 3 pairings drug/vehicle, each 30 min-long) induced by the glucose antimetabolite 2-deoxy-d-glucose (2-DG; 0, 300 or 500 mg/kg, SC). Locomotion and blood glucose were also assessed. Experiment 2 examined whether clonidine (noradrenergic α2 agonist, 0, 10 or 40 μg/kg, SC) or bupropion (monoamine reuptake blocker, 0, 10 or 30 mg/kg, SC) could alter CPA induced by 500 mg/kg 2-DG. In experiment 3, blood corticosterone (CORT) was measured in response to 500 mg/kg 2-DG, alone or in combination with 40 μg/kg clonidine or 30 mg/kg bupropion. Finally, experiment 4 controlled for possible place conditioning induced by 10 or 40 μg/kg clonidine, or 10 or 30 mg/kg bupropion injected without 2-DG. It was found that 2-DG increased blood glucose and produced a robust CPA. The feeding status of the animals modulated these effects, including CORT levels. Both clonidine and bupropion attenuated the effects of 2-DG on CPA and CORT, but only bupropion reversed suppression of locomotion. Taken together, these results in rats suggest that impaired glucose metabolism can negatively impact arousal and mood via effects on HPA and monoamine systems.

Keywords

Place avoidance 2-Deoxy-d-glucose Corticosterone Blood glucose Clonidine Bupropion 

Notes

Acknowledgements

This study was part of the Canadian Biomarker Integration Network in Depression (CAN-BIND) program (www.canbind.ca). CAN-BIND is an Integrated Discovery Program carried out in partnership with, and financial support from, the Ontario Brain Institute, an independent non-profit corporation, funded partially by the Ontario government. The opinions, results, and conclusions are those of the authors, and no endorsement by the Ontario Brain Institute is intended or should be inferred.

References

  1. Betley JN, Xu S, Cao ZFH, Gong R, Magnus CJ, Yu Y, Sternson SM (2015) Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521:180–185CrossRefPubMedCentralGoogle Scholar
  2. Booth DA (1972) Modulation of the feeding response to peripheral insulin, 2-deoxyglucose or 3-O-methyl glucose injection. Physiol Behav 8:1069–1076CrossRefPubMedCentralGoogle Scholar
  3. Breier A, Crane AM, Kennedy C, Sokoloff L (1993) The effects of pharmacologic doses of 2-deoxy-d-glucose on local cerebral blood flow in the awake, unrestrained rat. Brain Res 618:277–282CrossRefPubMedCentralGoogle Scholar
  4. Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:815–834CrossRefPubMedCentralGoogle Scholar
  5. Budzynska B, Biaa G (2011) Effects of bupropion on the reinstatement of nicotine-induced conditioned place preference by drug priming in rats. Pharmacol Rep 63:362–371CrossRefPubMedCentralGoogle Scholar
  6. Daniels S, Marshall P, Leri F (2016) Alterations of naltrexone-induced conditioned place avoidance by pre-exposure to high fructose corn syrup or heroin in Sprague–Dawley rats. Psychopharmacology 233:425–433CrossRefPubMedCentralGoogle Scholar
  7. Dean Z, Horndasch S, Giannopoulos P, McCabe C (2016) Enhanced neural response to anticipation, effort and consummation of reward and aversion during bupropion treatment. Psychol Med 46:2263–2274CrossRefPubMedCentralGoogle Scholar
  8. Delprete E, Scharrer E (1992) Effects of 2-deoxy-d-glucose on food intake of rats are affected by diet composition. Physiol Behav 51:951–956CrossRefPubMedCentralGoogle Scholar
  9. Dietz D, Wang H, Kabbaj M (2007) Corticosterone fails to produce conditioned place preference or conditioned place aversion in rats. Behav Brain Res 181:287–291CrossRefPubMedCentralGoogle Scholar
  10. Domingos AI, Vaynshteyn J, Voss HU, Ren X, Gradinaru V, Zang F, Deisseroth K, de Araujo IE, Friedman J (2011) Leptin regulates the reward value of nutrient. Nat Neurosci 14:1562–1568CrossRefPubMedCentralGoogle Scholar
  11. Edmonds BK, Edwards GL (1998) Dorsomedial hindbrain participation in glucoprivic feeding response to 2DG but not 2DG-induced hyperglycemia or activation of the HPA axis. Brain Res 801:21–28CrossRefPubMedCentralGoogle Scholar
  12. Engberg G, Eriksson E (1991) Effects of alpha 2-adrenoceptor agonists on locus coeruleus firing rate and brain noradrenaline turnover in N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)-treated rats. Naunyn Schmiedeberg's Arch Pharmacol 343:472–477CrossRefGoogle Scholar
  13. Farooqui AA, Farooqui T (2012) Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci 69:741–762CrossRefPubMedCentralGoogle Scholar
  14. Ferrario CR, Labouebe G, Liu S et al (2016) Homeostasis meets motivation in the battle to control food intake. J Neurosci 36:11469–11481CrossRefPubMedCentralGoogle Scholar
  15. Fortin SM, Chartoff EH, Roitman MF (2016) The aversive agent Lithium chloride suppresses phasic dopamine release through central GLP-1 receptors. Neuropsychopharmacology 41:906–915CrossRefPubMedCentralGoogle Scholar
  16. Gheshlagh RG, Parizad N, Sayehmiri K (2016) The relationship between depression and metabolic syndrome: systematic review and meta-analysis study. Iran Red Crescent Med J 18:e26523Google Scholar
  17. Gold AE, MacLeod KM, Frier BM, Deary IJ (1995) Changes in mood during acute hypoglycemia in healthy participants. J Pers Soc Psychol 68:498–504CrossRefPubMedCentralGoogle Scholar
  18. Guiard BP, El Mansari M, Blier P (2008) Cross-talk between dopaminergic and noradrenergic systems in the rat ventral tegmental area, locus ceruleus, and dorsal hippocampus. Mol Pharmacol 74:1463–1475CrossRefPubMedCentralGoogle Scholar
  19. Heiskanen TH, Niskanen LK, Hintikka JJ, Koivumaa-Honkanen HT, Honkalampi KM, Haatainen KM, Viinamäki HT (2006) Metabolic syndrome and depression: a cross-sectional analysis. J Clin Psychiatry 67:1422–1427CrossRefPubMedCentralGoogle Scholar
  20. Herman JP (2011) Central nervous system regulation of the hypothalamic-pituitary-adrenal axis stress response. In: The handbook of stress. Wiley-Blackwell: Oxford, pp 29–46CrossRefGoogle Scholar
  21. Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51:801–810CrossRefPubMedCentralGoogle Scholar
  22. Iguchi A, Gotoh M, Matsunaga H et al (1990) Neither adrenergic nor cholinergic antagonists in the central nervous system affect 2-deoxy-D-glucose (2-DG)-induced hyperglycemia. Brain Res 510:321–325CrossRefPubMedCentralGoogle Scholar
  23. Isingrini E, Perret L, Rainer Q, Amilhon B, Guma E, Tanti A, Martin G, Robinson J, Moquin L, Marti F, Mechawar N, Williams S, Gratton A, Giros B (2016) Resilience to chronic stress is mediated by noradrenergic regulation of dopamine neurons. Nat Neurosci 19:560–563CrossRefPubMedCentralGoogle Scholar
  24. Kamibayashi T, Maze M (2000) Clinical uses of alpha2 -adrenergic agonists. Anesthesiology 93:1345–1349CrossRefPubMedCentralGoogle Scholar
  25. Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121:1424–1428CrossRefPubMedCentralGoogle Scholar
  26. Lutter M, Sakata I, Osborne-Lawrence S, Rovinsky SA, Anderson JG, Jung S, Birnbaum S, Yanagisawa M, Elmquist JK, Nestler EJ, Zigman JM (2008) The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nat Neurosci 11:752–753CrossRefPubMedCentralGoogle Scholar
  27. Marin-Spiotta A, Levin BE, Tkacs NC (2004) A single episode of central glucoprivation reduces the adrenomedullary response to subsequent hypoglycemia in rats. Neurosci Lett 360:81–84CrossRefPubMedCentralGoogle Scholar
  28. Marty N, Dallaporta M, Thorens B (2007) Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda) 22:241–251Google Scholar
  29. Matsunaga H, Iguchi A, Yatomi A et al (1989) The relative importance of nervous system and hormones to the 2-deoxy-D-glucose-induced hyperglycemia in fed rats. Endocrinology 124:1259–1264CrossRefPubMedCentralGoogle Scholar
  30. McDannald MA, Galarce EM (2011) Measuring Pavlovian fear with conditioned freezing and conditioned suppression reveals different roles for the basolateral amygdala. Brain Res 1374:82–89CrossRefPubMedCentralGoogle Scholar
  31. Messier C (2004) Glucose improvement of memory: a review. Eur J Pharmacol 490:33–57CrossRefPubMedCentralGoogle Scholar
  32. O’Doherty JP (2004) Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol 14:769–776CrossRefPubMedCentralGoogle Scholar
  33. Ortmann R (1985) The conditioned place preference paradigm in rats: effect of bupropion. Life Sci 37:2021–2027CrossRefPubMedCentralGoogle Scholar
  34. Park MJ, Guest CB, Barnes MB, Martin J, Ahmad U, York JM, Freund GG (2008) Blocking of beta-2 adrenergic receptors hastens recovery from hypoglycemia-associated social withdrawal. Psychoneuroendocrinology 33:1411–1418CrossRefPubMedCentralGoogle Scholar
  35. Park MJ, Yoo SW, Choe BS, Dantzer R, Freund GG (2012) Acute hypoglycemia causes depressive-like behaviors in mice. Metabolism 61:229–236CrossRefPubMedCentralGoogle Scholar
  36. Piacentini MF, Clinckers R, Meeusen R, Sarre S, Ebinger G, Michotte Y (2003) Effect of bupropion on hippocampal neurotransmitters and on peripheral hormonal concentrations in the rat. J Appl Physiol 95:652–656.  https://doi.org/10.1152/japplphysiol.01058.2002 CrossRefPubMedGoogle Scholar
  37. Rauhut AS, Hawrylak M, Mardekian SK (2008) Bupropion differentially alters the aversive, locomotor and rewarding properties of nicotine in CD-1 mice. Pharmacol Biochem Behav 90:598–607CrossRefPubMedCentralGoogle Scholar
  38. Ritter S, Watts AG, Dinh TT, Sanchez-Watts G, Pedrow C (2003) Immunotoxin lesion of hypothalamically projecting norepinephrine and epinephrine neurons differentially affects circadian and stressor-stimulated corticosterone secretion. Endocrinology 144:1357–1367CrossRefPubMedCentralGoogle Scholar
  39. Ritter S, Dinh TT, Li A-J (2006) Hindbrain catecholamine neurons control multiple glucoregulatory responses. Physiol Behav 89:490–500CrossRefPubMedCentralGoogle Scholar
  40. Ritter S, Li AJ, Wang Q, Dinh TT (2011) Minireview: the value of looking backward: the essential role of the hindbrain in counterregulatory responses to glucose deficit. Endocrinology 152:4019–4032CrossRefPubMedCentralGoogle Scholar
  41. Scheurink A, Ritter S (1993) Sympathoadrenal responses to glucoprivation and lipoprivation in rats. Physiol Behav 53:995–1000CrossRefPubMedCentralGoogle Scholar
  42. Smith GP, Epstein AN (1969) Increased feeding in response to decreased glucose utilization in the rat and monkey. Am J Phys 217:1083–1087Google Scholar
  43. Solecki WB, Szklarczyk K, Pradel K et al (2017) Alpha 1-adrenergic receptor blockade in the VTA modulates fear memories and stress responses. Eur Neuropsychopharmacol 27:782–794CrossRefPubMedCentralGoogle Scholar
  44. Stephan FK, Smith JC, Fisher E (1999) Profound conditioned taste aversion induced by oral consumption of 2-deoxy-D-glucose. Physiol Behav 68:221–226CrossRefPubMedCentralGoogle Scholar
  45. Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P (2004) Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29:2007–2017CrossRefPubMedCentralGoogle Scholar
  46. Takahashi A, Ishimaru H, Ikarashi Y, Kishi E, Maruyama Y (1997) Hypothalamic cholinergic activity and 2-deoxyglucose-induced hyperglycemia. Brain Res Bull 43:65–68.CrossRefPubMedCentralGoogle Scholar
  47. Tan KR, Yvon C, Turiault M, Mirzabekov JJ, Doehner J, Labouèbe G, Deisseroth K, Tye KM, Lüscher C (2012) GABA neurons of the VTA drive conditioned place aversion. Neuron 73:1173–1183CrossRefPubMedCentralGoogle Scholar
  48. Treit D, Fundytus M (1988) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31:959–962CrossRefPubMedCentralGoogle Scholar
  49. Vreeburg S, Hoogendijk W, van Pelt J, DeRijk R (2013) Major depressive disorder and hypothalamic-pituitary-adrenal axis activity. Arch Gen Psychiatry 66:617–626CrossRefGoogle Scholar
  50. Xirouchaki CE, Mangiafico SP, Bate K, Ruan Z, Huang AM, Tedjosiswoyo BW, Lamont B, Pong W, Favaloro J, Blair AR, Zajac JD, Proietto J, Andrikopoulos S (2016) Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1) deletion in adult mice. Mol Metab 5:221–232CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychology and NeuroscienceUniversity of GuelphGuelphCanada
  2. 2.Laboratory of the Biology of Addictive DiseasesThe Rockefeller UniversityNew YorkUSA

Personalised recommendations