, Volume 235, Issue 7, pp 2177–2191 | Cite as

Novel antidepressant effects of Paeonol alleviate neuronal injury with concomitant alterations in BDNF, Rac1 and RhoA levels in chronic unpredictable mild stress rats

  • Xiu-Ling Zhu
  • Jing-Jing Chen
  • Fei Han
  • Chuan Pan
  • Ting-Ting Zhuang
  • Ya-Fei Cai
  • Ya-Ping LuEmail author
Original Investigation



Increasing evidence has suggested that major depressive disorder (MDD) is highly associated with brain-derived neurotrophic factor (BDNF) levels, dendrites atrophy, and loss of dendritic spines, especially in emotion-associated brain regions including the hippocampus. Paeonol is a kind of polyphenols natural product with a variety of therapeutic effects. Recent studies have reported its antidepressant effects. However, it is unclear what signaling pathways contribute to improve MDD.


The present study investigated the effect of Paeonol on hippocampal neuronal morphology and its possible signaling pathways in chronic unpredictable mild stress (CUMS) rat model.


Using CUMS rat model, the antidepressant-like effect of Paeonol was validated via depression-related behavioral tests. Neuronal morphology in hippocampal CA1 and DG was assessed using ImageJ’s Sholl plugin and RESCONSTRUCT software. BDNF signaling pathway-related molecules was determined by Western blotting.


Paeonol attenuated CUMS-induced depression-like behaviors, which were accompanied by hippocampal neuronal morphological alterations. After Paeonol treatment for 4 weeks, the dendritic length and complexity and the density of dendritic spines markedly increased in the hippocampal CA1 and the dentate gyrus (DG). However, CUMS or Paeonol treatment does not selectively affect dendritic spine types. Simultaneously, administration of Paeonol deterred CUMS-induced cofilin1 activation that is essential for remolding of dendritic spines. The induction of CUMS downregulated BDNF levels and upregulated Rac1/RhoA levels; however, the tendency of these was inhibited by treatment with Paeonol.


Our data suggest that BDNF-Rac1/RhoA pathway may be involved in attenuation of CUMS-induced behavioral and neuronal damage by Paeonol that may represent a novel therapeutic agent for depression.


Depression Dendritic spine Paeonol Cofilin1 BDNF 



This work was supported by the National Natural Science Foundation of China (No. 30470537), the Natural Science Foundation of the Department of Education, Anhui Province (ZD2008006-1), the Innovation Team of Scientific Research Platform in Anhui Universities, and the Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui.

Compliance with ethical standards

Conflict of interest

The authors declare there is no conflict of interest.

Supplementary material

213_2018_4915_MOESM1_ESM.pdf (421 kb)
ESM 1 (PDF 420 kb)
213_2018_4915_Fig9_ESM.gif (1.1 mb)

(GIF 1128 kb)

213_2018_4915_MOESM2_ESM.tif (1.2 mb)
High resolution image (TIF 1195 kb)


  1. Altar CA (1999) Neurotrophins and depression. Trends Pharmacol Sci 20(2):59–61CrossRefPubMedGoogle Scholar
  2. Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64(2):238–258. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bennett MR, Lagopoulos J (2014) Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog Neurobiol 112:80–99. CrossRefPubMedGoogle Scholar
  4. Bernstein BW, Bamburg JR (2010) ADF/cofilin: a functional node in cell biology. Trends Cell Biol 20(4):187–195. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bessa JM, Ferreira D, Melo I, Marques F, Cerqueira JJ, Palha JA, Almeida OF, Sousa N (2009) The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry 14(8):764–773, 739. CrossRefPubMedGoogle Scholar
  6. Bourne J, Harris KM (2007) Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 17(3):381–386. CrossRefPubMedGoogle Scholar
  7. Bravo-Cordero JJ, Magalhaes MA, Eddy RJ, Hodgson L, Condeelis J (2013) Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol 14(7):405–415. CrossRefPubMedGoogle Scholar
  8. Bringas ME, Carvajal-Flores FN, Lopez-Ramirez TA, Atzori M, Flores G (2013) Rearrangement of the dendritic morphology in limbic regions and altered exploratory behavior in a rat model of autism spectrum disorder. Neuroscience 241:170–187. CrossRefPubMedGoogle Scholar
  9. Castren E, Kojima M (2017) Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis 97(Pt B):119–126. CrossRefPubMedGoogle Scholar
  10. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50(4):260–265CrossRefPubMedGoogle Scholar
  11. Christoffel DJ, Golden SA, Russo SJ (2011) Structural and synaptic plasticity in stress-related disorders. Rev Neurosci 22(5):535–549. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cleare A, Pariante CM, Young AH, Anderson IM, Christmas D, Cowen PJ, Dickens C, Ferrier IN, Geddes J, Gilbody S, Haddad PM, Katona C, Lewis G, Malizia A, RH MA-W, Ramchandani P, Scott J, Taylor D, Uher R, Members of the Consensus M (2015) Evidence-based guidelines for treating depressive disorders with antidepressants: a revision of the 2008 British Association for Psychopharmacology guidelines. J Psychopharmacol 29(5):459–525. CrossRefPubMedGoogle Scholar
  13. Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29(4–5):571–625. CrossRefPubMedGoogle Scholar
  14. Ding Y, Li Q, Xu Y, Chen Y, Deng Y, Zhi F, Qian K (2016) Attenuating oxidative stress by paeonol protected against acetaminophen-induced hepatotoxicity in mice. PLoS One 11(5):e0154375. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Du Q, Feng GZ, Shen L, Cui J, Cai JK (2010) Paeonol attenuates airway inflammation and hyperresponsiveness in a murine model of ovalbumin-induced asthma. Can J Physiol Pharmacol 88(10):1010–1016. CrossRefPubMedGoogle Scholar
  16. Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338(6103):68–72. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127. CrossRefPubMedGoogle Scholar
  18. Duman RS, Aghajanian GK, Sanacora G, Krystal JH (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 22(3):238–249. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Frost NA, Shroff H, Kong H, Betzig E, Blanpied TA (2010) Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron 67(1):86–99. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gourley SL, Swanson AM, Koleske AJ (2013) Corticosteroid-induced neural remodeling predicts behavioral vulnerability and resilience. J Neurosci 33(7):3107–3112. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Han F, Zhuang TT, Chen JJ, Zhu XL, Cai YF, Lu YP (2017) Novel derivative of Paeonol, Paeononlsilatie sodium, alleviates behavioral damage and hippocampal dendritic injury in Alzheimer’s disease concurrent with cofilin1/phosphorylated-cofilin1 and RAC1/CDC42 alterations in rats. PLoS One 12(9):e0185102. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371. CrossRefPubMedGoogle Scholar
  23. He CN, Peng Y, Zhang YC, Xu LJ, Gu J, Xiao PG (2010) Phytochemical and biological studies of paeoniaceae. Chem Biodivers 7(4):805–838. CrossRefPubMedGoogle Scholar
  24. Hirai A, Terano T, Hamazaki T, Sajiki J, Saito H, Tahara K, Tamura Y, Kumagai A (1983) Studies on the mechanism of antiaggregatory effect of Moutan Cortex. Thromb Res 31(1):29–40CrossRefPubMedGoogle Scholar
  25. Hoshaw BA, Malberg JE, Lucki I (2005) Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res 1037(1–2):204–208. CrossRefPubMedGoogle Scholar
  26. Hsieh CL, Cheng CY, Tsai TH, Lin IH, Liu CH, Chiang SY, Lin JG, Lao CJ, Tang NY (2006) Paeonol reduced cerebral infarction involving the superoxide anion and microglia activation in ischemia-reperfusion injured rats. J Ethnopharmacol 106(2):208–215. CrossRefPubMedGoogle Scholar
  27. Ishiguro K, Ando T, Maeda O, Hasegawa M, Kadomatsu K, Ohmiya N, Niwa Y, Xavier R, Goto H (2006) Paeonol attenuates TNBS-induced colitis by inhibiting NF-kappaB and STAT1 transactivation. Toxicol Appl Pharmacol 217(1):35–42. CrossRefPubMedGoogle Scholar
  28. Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure-stability-function relationships of dendritic spines. Trends Neurosci 26(7):360–368. CrossRefPubMedGoogle Scholar
  29. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455(7215):894–902. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lane RM (2015) Antidepressant drug development: focus on triple monoamine reuptake inhibition. J Psychopharmacol 29(5):526–544. CrossRefPubMedGoogle Scholar
  31. Leuner B, Gould E (2010) Structural plasticity and hippocampal function. Annu Rev Psychol 61(111–140):C111–C113. CrossRefGoogle Scholar
  32. Leuner B, Shors TJ (2013) Stress, anxiety, and dendritic spines: what are the connections? Neuroscience 251:108–119. CrossRefPubMedGoogle Scholar
  33. Li H, Dai M, Jia W (2009) Paeonol attenuates high-fat-diet-induced atherosclerosis in rabbits by anti-inflammatory activity. Planta Med 75(1):7–11. CrossRefPubMedGoogle Scholar
  34. Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, Li XY, Aghajanian G, Duman RS (2011) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69(8):754–761. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Li H, Song F, Duan LR, Sheng JJ, Xie YH, Yang Q, Chen Y, Dong QQ, Zhang BL, Wang SW (2016) Paeonol and danshensu combination attenuates apoptosis in myocardial infarcted rats by inhibiting oxidative stress: roles of Nrf2/HO-1 and PI3K/Akt pathway. Sci Rep 6:23693. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lin B (2011) Polyphenols and neuroprotection against ischemia and neurodegeneration. Mini Rev Med Chem 11(14):1222–1238PubMedGoogle Scholar
  37. Liu X, Chan CB, Jang SW, Pradoldej S, Huang J, He K, Phun LH, France S, Xiao G, Jia Y, Luo HR, Ye K (2010) A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. J Med Chem 53(23):8274–8286. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Liu R, Dang W, Jianting M, Su C, Wang H, Chen Y, Tan Q (2012a) Citalopram alleviates chronic stress induced depression-like behaviors in rats by activating GSK3beta signaling in dorsal hippocampus. Brain Res 1467:10–17. CrossRefPubMedGoogle Scholar
  39. Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK (2012b) Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry 71(11):996–1005. CrossRefPubMedGoogle Scholar
  40. Liu J, Feng L, Ma D, Zhang M, Gu J, Wang S, Fu Q, Song Y, Lan Z, Qu R, Ma S (2013) Neuroprotective effect of paeonol on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat. Neurosci Lett 549:63–68. CrossRefPubMedGoogle Scholar
  41. Liu MH, Lin AH, Lee HF, Ko HK, Lee TS, Kou YR (2014a) Paeonol attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling. Mediat Inflamm 2014:651890. CrossRefGoogle Scholar
  42. Liu MH, Lin AH, Lu SH, Peng RY, Lee TS, Kou YR (2014b) Eicosapentaenoic acid attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling. Front Physiol 5:440. PubMedPubMedCentralCrossRefGoogle Scholar
  43. Magarinos AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 69(1):83–88CrossRefPubMedGoogle Scholar
  44. Maiti P, Manna J, Ilavazhagan G, Rossignol J, Dunbar GL (2015) Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases. Neurosci Biobehav Rev 59:208–237. CrossRefPubMedGoogle Scholar
  45. Martinez-Tellez RI, Hernandez-Torres E, Gamboa C, Flores G (2009) Prenatal stress alters spine density and dendritic length of nucleus accumbens and hippocampus neurons in rat offspring. Synapse 63(9):794–804. CrossRefPubMedGoogle Scholar
  46. Mavroudis IA, Fotiou DF, Manani MG, Njaou SN, Frangou D, Costa VG, Baloyannis SJ (2011) Dendritic pathology and spinal loss in the visual cortex in Alzheimer’s disease: a Golgi study in pathology. Int J Neurosci 121(7):347–354. CrossRefPubMedGoogle Scholar
  47. McEwen BS, Eiland L, Hunter RG, Miller MM (2012) Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology 62(1):3–12. CrossRefPubMedGoogle Scholar
  48. Mizuno K (2013) Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal 25(2):457–469. CrossRefPubMedGoogle Scholar
  49. Murrough JW, Abdallah CG, Mathew SJ (2017) Targeting glutamate signalling in depression: progress and prospects. Nat Rev Drug Discov 16(7):472–486. CrossRefPubMedGoogle Scholar
  50. Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353. CrossRefPubMedGoogle Scholar
  51. Noguchi J, Matsuzaki M, Ellis-Davies GC, Kasai H (2005) Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron 46(4):609–622. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates (6th edition). Elsevier Academic Press, AmsterdamGoogle Scholar
  53. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167CrossRefPubMedGoogle Scholar
  54. Petersen I, Nazareth I (2015) Antidepressant dose and risk of deliberate self-harm: is it the dose or the indication? JAMA Intern Med 175(3):463–464. CrossRefPubMedGoogle Scholar
  55. Petrak LJ, Harris KM, Kirov SA (2005) Synaptogenesis on mature hippocampal dendrites occurs via filopodia and immature spines during blocked synaptic transmission. J Comp Neurol 484(2):183–190. CrossRefPubMedGoogle Scholar
  56. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465CrossRefPubMedGoogle Scholar
  57. Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266(5604):730–732CrossRefPubMedGoogle Scholar
  58. Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR, McEwen BS, Morrison JH (2006) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16(3):313–320. CrossRefPubMedGoogle Scholar
  59. Rantamaki T, Yalcin I (2016) Antidepressant drug action—from rapid changes on network function to network rewiring. Prog Neuro-Psychopharmacol Biol Psychiatry 64:285–292. CrossRefGoogle Scholar
  60. Risher WC, Ustunkaya T, Singh Alvarado J, Eroglu C (2014) Rapid Golgi analysis method for efficient and unbiased classification of dendritic spines. PLoS One 9(9):e107591. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sadowski MJ, Pankiewicz J, Scholtzova H, Mehta PD, Prelli F, Quartermain D, Wisniewski T (2006) Blocking the apolipoprotein E/amyloid-beta interaction as a potential therapeutic approach for Alzheimer’s disease. Proc Natl Acad Sci U S A 103(49):18787–18792. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sala C, Segal M (2014) Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 94(1):141–188. CrossRefPubMedGoogle Scholar
  63. Souery D, Serretti A, Calati R, Oswald P, Massat I, Konstantinidis A, Linotte S, Bollen J, Demyttenaere K, Kasper S, Lecrubier Y, Montgomery S, Zohar J, Mendlewicz J (2011) Switching antidepressant class does not improve response or remission in treatment-resistant depression. J Clin Psychopharmacol 31(4):512–516. CrossRefPubMedGoogle Scholar
  64. Sousa N, Lukoyanov NV, Madeira MD, Almeida OF, Paula-Barbosa MM (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97(2):253–266CrossRefPubMedGoogle Scholar
  65. Spence EF, Soderling SH (2015) Actin out: regulation of the synaptic cytoskeleton. J Biol Chem 290(48):28613–28622. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Taliaz D, Stall N, Dar DE, Zangen A (2010) Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis. Mol Psychiatry 15(1):80–92. CrossRefPubMedGoogle Scholar
  67. Tao W, Wang H, Su Q, Chen Y, Xue W, Xia B, Duan J, Chen G (2016) Paeonol attenuates lipopolysaccharide-induced depressive-like behavior in mice. Psychiatry Res 238:116–121. CrossRefPubMedGoogle Scholar
  68. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, Howland RH, Lebowitz B, McGrath PJ, Shores-Wilson K, Biggs MM, Balasubramani GK, Fava M, Team SDS (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 163(1):28–40. CrossRefPubMedGoogle Scholar
  69. Tseng YT, Hsu YY, Shih YT, Lo YC (2012) Paeonol attenuates microglia-mediated inflammation and oxidative stress-induced neurotoxicity in rat primary microglia and cortical neurons. Shock 37(3):312–318. CrossRefPubMedGoogle Scholar
  70. Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C (2008) Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol 87(8–9):649–667. PubMedCrossRefGoogle Scholar
  71. W.H.O. (2016) Depression. Fact sheet. No 369/April 2016 Available at
  72. Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83(3):482–504CrossRefPubMedGoogle Scholar
  73. Wang G, Cheng Y, Gong M, Liang B, Zhang M, Chen Y, Zhang C, Yuan X, Xu J (2013) Systematic correlation between spine plasticity and the anxiety/depression-like phenotype induced by corticosterone in mice. Neuroreport 24(12):682–687. CrossRefPubMedGoogle Scholar
  74. Wang Y, Kan H, Yin Y, Wu W, Hu W, Wang M, Li W, Li W (2014) Protective effects of ginsenoside Rg1 on chronic restraint stress induced learning and memory impairments in male mice. Pharmacol Biochem Behav 120:73–81. CrossRefPubMedGoogle Scholar
  75. Watanabe Y, Gould E, McEwen BS (1992) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 588(2):341–345CrossRefPubMedGoogle Scholar
  76. Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134(4):319–329CrossRefPubMedGoogle Scholar
  77. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93(3):358–364CrossRefPubMedGoogle Scholar
  78. Yakel JL (1997) Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription. Trends Pharmacol Sci 18(4):124–134CrossRefPubMedGoogle Scholar
  79. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393(6687):809–812. CrossRefPubMedGoogle Scholar
  80. Zhao Y, Fu B, Zhang X, Zhao T, Chen L, Zhang J, Wang X (2014) Paeonol pretreatment attenuates cerebral ischemic injury via upregulating expression of pAkt, Nrf2, HO-1 and ameliorating BBB permeability in mice. Brain Res Bull 109:61–67. CrossRefPubMedGoogle Scholar
  81. Zhou J, Zhou L, Hou D, Tang J, Sun J, Bondy SC (2011) Paeonol increases levels of cortical cytochrome oxidase and vascular actin and improves behavior in a rat model of Alzheimer’s disease. Brain Res 1388:141–147. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Life ScienceAnhui Normal UniversityWuhuChina
  2. 2.Department of AnatomyWannan Medical CollegeWuhuChina

Personalised recommendations