Psychopharmacology

, Volume 235, Issue 4, pp 1257–1271 | Cite as

Mapping brain functional alterations in betel-quid chewers using resting-state fMRI and network analysis

  • Jun-Cheng Weng
  • Yu-Syuan Chou
  • Guo-Joe Huang
  • Yeu-Sheng Tyan
  • Ming-Chou Ho
Original Investigation
  • 95 Downloads

Abstract

Rationale

The World Health Organization regards betel quid (BQ) as a human carcinogen, and DSM-IV and ICD-10 dependence symptoms may develop with its heavy use. BQ’s possible effects of an enhanced reward system and disrupted inhibitory control may increase the likelihood of habitual substance use.

Objectives

The current study aimed to employ resting-state fMRI to examine the hypothesized enhanced reward system (e.g., the basal forebrain system) and disrupted inhibitory control (e.g., the prefrontal system) in BQ chewers.

Methods

The current study recruited three groups of 48 male participants: 16 BQ chewers, 15 tobacco- and alcohol-user controls, and 17 healthy controls. We used functional connectivity (FC), mean fractional amplitude of low-frequency fluctuations (mfALFF), and mean regional homogeneity (mReHo) to evaluate functional alternations in BQ chewers. Graph theoretical analysis (GTA) and network-based statistical (NBS) analysis were also performed to identify the functional network differences among the three groups.

Results

Our hypothesis was partially supported: the enhanced reward system for the BQ chewers (e.g., habitual drug-seeking behavior) was supported; however, their inhibitory control was relatively preserved. In addition, we reported that the BQ chewers may have enhanced visuospatial processing and decreased local segregation.

Conclusions

The current results (showing an enhanced reward system in the chewers) provided the clinicians with important insight for the future development of an effective abstinence treatment.

Keywords

Betel quid Resting-state functional MRI (rs-fMRI) Functional connectome Graph theoretical analysis (GTA) Network-based statistical (NBS) analysis 

Notes

Acknowledgements

The authors would like to thank Jau-Yang Lin for his assistance in experimental preparation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abbas G, Naqvi S, Erum S, Ahmed S, Dar A (2013) Potential antidepressant activity of Areca catechu nut via elevation of serotonin and noradrenaline in the hippocampus of rats. Phytother Res 27:39–45CrossRefPubMedGoogle Scholar
  2. Asthana S, Raffaele KC, Greig NH, Berardi A, Morris PP, Schapiro MB, Rapoport SI, Blackman MR, Soncrant TT (1995) Neuroendocrine responses to intravenous infusion of arecoline in patients with Alzheimer’s disease. Psychoneuroendocrinology 20(6):623–636.  https://doi.org/10.1016/0306-4530(94)00084-N CrossRefPubMedGoogle Scholar
  3. Baria AT, Baliki MN, Parrish T, Apkarian AV (2011) Anatomical and functional assemblies of brain BOLD oscillations. J Neurosci 31(21):7910–7919.  https://doi.org/10.1523/JNEUROSCI.1296-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bechara A (2005) Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci 8(11):1458–1463.  https://doi.org/10.1038/nn1584 CrossRefPubMedGoogle Scholar
  5. Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37(1):90–101.  https://doi.org/10.1016/j.neuroimage.2007.04.042 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Benegal V, Rajkumar RP, Muralidharan K (2008) Does areca nut use lead to dependence? Drug Alcohol Depend 97(1-2):114–121.  https://doi.org/10.1016/j.drugalcdep.2008.03.016 CrossRefPubMedGoogle Scholar
  7. Bigler ED, Mortensen S, Neeley ES, Ozonoff S, Krasny L, Johnson M, Lu J, Provencal SL, McMahon W, Lainhart JE (2007) Superior temporal gyrus, language function, and autism. Dev Neuropsychol 31(2):217–238.  https://doi.org/10.1080/87565640701190841 CrossRefPubMedGoogle Scholar
  8. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541.  https://doi.org/10.1002/mrm.1910340409 CrossRefPubMedGoogle Scholar
  9. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network. Ann N Y Acad Sci 1124(1):1–38.  https://doi.org/10.1196/annals.1440.011 CrossRefPubMedGoogle Scholar
  10. Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 7(1):113–140.  https://doi.org/10.1146/annurev-clinpsy-040510-143934 CrossRefPubMedGoogle Scholar
  11. Bullmore ET, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198.  https://doi.org/10.1038/nrn2575 CrossRefPubMedGoogle Scholar
  12. Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cognit Neurosci 12(1):1–47.  https://doi.org/10.1162/08989290051137585 CrossRefGoogle Scholar
  13. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129(3):564–583.  https://doi.org/10.1093/brain/awl004 CrossRefPubMedGoogle Scholar
  14. Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS (2014) Decreased segregation of brain systems across the healthy adult lifespan. Proc Natl Acad Sci 111(46):E4997–E5006.  https://doi.org/10.1073/pnas.1415122111 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chase HW, Eickhoff SB, Laird AR, Hogarth L (2011) The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol Psychiatry 70(8):785–793.  https://doi.org/10.1016/j.biopsych.2011.05.025 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen CH, Chen WJ, Cheng AT (2005) New approach to the validity of the alcohol use disorders identification test: stratum-specific likelihood ratios analysis. Alcohol Clin Exp Res 29(4):602–608.  https://doi.org/10.1097/01.ALC.0000159189.56671.EC CrossRefPubMedGoogle Scholar
  17. Chen F, Zhong Y, Zhang Z, Xu Q, Liu T, Pan M, Li J, Lu G (2015) Gray matter abnormalities associated with betel quid dependence: a voxel-based morphometry study. Am J Transl Res 7(2):364–374PubMedPubMedCentralGoogle Scholar
  18. Chen VC, Shen CY, Liang SH, Li ZH, Tyan YS, Liao YT, Huang YC, Lee Y, McIntyre RS, Weng JC (2016) Assessment of abnormal brain structures and networks in major depressive disorder using morphometric and connectome analyses. J Affect Disord 205:103–111.  https://doi.org/10.1016/j.jad.2016.06.066 CrossRefPubMedGoogle Scholar
  19. Chica AB, Bartolomeo P, Lupiáñez J (2013) Two cognitive and neural systems for endogenous and exogenous spatial attention. Behav Brain Res 237:107–123CrossRefPubMedGoogle Scholar
  20. Chiu M-C, Shen B, Li S-H, Ho M-C (2016) Spatial short-term memory is impaired in dependent betel quid chewers. Psychopharmacology 233(15-16):2925–2932.  https://doi.org/10.1007/s00213-016-4331-9 CrossRefPubMedGoogle Scholar
  21. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 22(7):1326–1333PubMedGoogle Scholar
  22. Droutman V, Read SJ, Bechara A (2015) Revisiting the role of the insula in addiction. Trends Cogn Sci 19(7):414–420.  https://doi.org/10.1016/j.tics.2015.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Du Boisgueheneuc F, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehun S, Samson Y, Zhang S, Dubois B (2006) Functions of the left superior frontal gyrus in humans: a lesion study. Brain 129:3315–3328CrossRefPubMedGoogle Scholar
  24. Ersche KD, Jones PS, Williams GB, Turton AJ, Robbins TW, Bullmore ET (2012) Abnormal brain structure implicated in stimulant drug addiction. Science 335(6068):601–604.  https://doi.org/10.1126/science.1214463 CrossRefPubMedGoogle Scholar
  25. Ersche KD, Williams GB, Robbins TW, Bullmore ET (2013) Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience. Curr Opin Neurobiol 23(4):615–624.  https://doi.org/10.1016/j.conb.2013.02.017 CrossRefPubMedGoogle Scholar
  26. Everitt BJ, Cardinal RN, Hall J, Parkinson J, & Robbins T (2000) Differential involvement of amygdala subsystems in appetitive conditioning and drug addiction. In: Aggleton JP (ed), The amygdala: a functional analysis, Oxford University Press, Oxford, p 353-390Google Scholar
  27. Fagerström K-O (1978) Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment. Addict Behav 3(3-4):235–241.  https://doi.org/10.1016/0306-4603(78)90024-2 CrossRefPubMedGoogle Scholar
  28. Fransson P, Marrelec G (2008) The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. NeuroImage 42(3):1178–1184.  https://doi.org/10.1016/j.neuroimage.2008.05.059 CrossRefPubMedGoogle Scholar
  29. Gearhardt AN, Yokum S, Stice E, Harris JL, Brownell KD (2014) Relation of obesity to neural activation in response to food commercials. Soc Cogn Affect Neurosci 9(7):932–938.  https://doi.org/10.1093/scan/nst059 CrossRefPubMedGoogle Scholar
  30. Goldstein RZ, Bechara A, Garavan H, Childress AR, Paulus MP, Volkow ND (2009) The neurocircuitry of impaired insight in drug addiction. Trends Cogn Sci 13(9):372–380.  https://doi.org/10.1016/j.tics.2009.06.004 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gong Q, He Y (2015) Depression, neuroimaging and connectomics: a selective overview. Biol Psychiatry 77(3):223–235.  https://doi.org/10.1016/j.biopsych.2014.08.009 CrossRefPubMedGoogle Scholar
  32. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100(1):253–258.  https://doi.org/10.1073/pnas.0135058100 CrossRefPubMedGoogle Scholar
  33. Gu H, Salmeron BJ, Ross TJ, Geng X, Zhan W, Stein EA, Yang Y (2010) Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. NeuroImage 53(2):593–601.  https://doi.org/10.1016/j.neuroimage.2010.06.066 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ho MC (2014) Commentary on Lee et al. (2014): betel-quid—when east encounters west. Addiction 109(7):1205–1206.  https://doi.org/10.1111/add.12614 CrossRefPubMedGoogle Scholar
  35. Ho MC, Chang CF, Li RH, Tang TC (2013) Attentional biases for betel nut cues in heavy and light chewers. Psychol Addict Behav 27(4):1044–1049.  https://doi.org/10.1037/a0030562 CrossRefPubMedGoogle Scholar
  36. Ho MC, Li RH, Tang TC (2015) Betel nut chewing effects on sustained attention and inhibitory control after sleep deprivation. Aust J Psychol 67(4):222–230.  https://doi.org/10.1111/ajpy.12081 CrossRefGoogle Scholar
  37. Ho MC, Wang CK (2010) Can betel nut chewing affect the UFOV size after sleep deprivation? Chin J Psychol 52:445–456Google Scholar
  38. Ho MC, Wang CK (2011) The effect of betel nut chewing on contour and object masking. Atten Percept Psychophys 73(8):2583–2593.  https://doi.org/10.3758/s13414-011-0214-7 CrossRefPubMedGoogle Scholar
  39. Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top-down attentional control. Nat Neurosci 3(3):284–291.  https://doi.org/10.1038/72999 CrossRefPubMedGoogle Scholar
  40. Hosseini SM, Hoeft F, Kesler SR (2012) GAT: a graph-theoretical analysis toolbox for analyzing between-group differences in large-scale structural and functional brain networks. PLoS One 7:e40709CrossRefPubMedPubMedCentralGoogle Scholar
  41. Huang C-L, Lin H-H, Wang H-H (2006) The psychometric properties of the Chinese version of the Fagerstrom test for nicotine dependence. Addict Behav 31(12):2324–2327.  https://doi.org/10.1016/j.addbeh.2006.02.024 CrossRefPubMedGoogle Scholar
  42. Huang X, Liu Z, Mwansisya TE, Pu W, Zhou L, Liu C, Chen X, Rohrbaugh R, Marienfeld C, Xue Z (2016) Betel quid chewing alters functional connectivity in frontal and default networks: a resting-state fMRI study. J Magn Reson Imaging 45(1):157–166CrossRefPubMedGoogle Scholar
  43. Huang X, Pu W, Liu H, Li X, Greenshaw AJ, Dursun SM, Xue Z, Liu Z (2017) Altered brain functional connectivity in betel quid-dependent chewers. Front Psych 8:239.  https://doi.org/10.3389/fpsyt.2017.00239 CrossRefGoogle Scholar
  44. IARC (2004) Betel-quid and areca-nut chewing and some areca-nut-derived nitrosamines. IARC Monogr Eval Carcinog Risks Hum, LyonGoogle Scholar
  45. Japee S, Holiday K, Satyshur MD, Mukai I, Ungerleider LG (2015) A role of right middle frontal gyrus in reorienting of attention: a case study. Front Syst Neurosci 9:1–16CrossRefGoogle Scholar
  46. Jasinska AJ, Stein EA, Kaiser J, Naumer MJ, Yalachkov Y (2014) Factors modulating neural reactivity to drug cues in addiction: a survey of human neuroimaging studies. Neurosci Biobehav Rev 38:1–16.  https://doi.org/10.1016/j.neubiorev.2013.10.013 CrossRefPubMedGoogle Scholar
  47. Jou RJ, Minshew NJ, Keshavan MS, Vitale MP, Hardan AY (2010) Enlarged right superior temporal gyrus in children and adolescents with autism. Brain Res 1360:205–212.  https://doi.org/10.1016/j.brainres.2010.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kühn S, Gallinat J (2011) Common biology of craving across legal and illegal drugs—a quantitative meta-analysis of cue-reactivity brain response. Eur J Neurosci 33(7):1318–1326.  https://doi.org/10.1111/j.1460-9568.2010.07590.x CrossRefPubMedGoogle Scholar
  49. Kim H, Kim YK, Gwak AR, Lim J-A, Lee J-Y, Jung HY, Sohn BK, Choi S-W, Choi J-S (2015) Resting-state regional homogeneity as a biological marker for patients with internet gaming disorder: a comparison with patients with alcohol use disorder and healthy controls. Prog Neuro-Psychopharmacol Biol Psychiatry 60:104–111.  https://doi.org/10.1016/j.pnpbp.2015.02.004 CrossRefGoogle Scholar
  50. Ko YC, Chiang TA, Chang SJ, Hsieh SF (1992) Prevalence of betel quid chewing habit in Taiwan and related sociodemographic factors. J Oral Pathol Med 21(6):261–264.  https://doi.org/10.1111/j.1600-0714.1992.tb01007.x CrossRefPubMedGoogle Scholar
  51. Koob GF (2006) The neurobiology of addiction: a neuroadaptational view relevant for diagnosis. Addiction 101:23–30.  https://doi.org/10.1111/j.1360-0443.2006.01586.x CrossRefPubMedGoogle Scholar
  52. Koob GF, Le Moal M (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci 8(11):1442–1444.  https://doi.org/10.1038/nn1105-1442 CrossRefPubMedGoogle Scholar
  53. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238.  https://doi.org/10.1038/npp.2009.110 CrossRefPubMedGoogle Scholar
  54. Lee CH, Chiang SL, Ko AMS, Hua CH, Tsai MH, Warnakulasuriya S, Ibrahim SO, Zain RB, Ling TY, Huang CL (2014) Betel-quid dependence domains and syndrome associated with betel-quid ingredients among chewers: an Asian multi-country evidence. Addiction 109(7):1194–1204.  https://doi.org/10.1111/add.12530 CrossRefPubMedGoogle Scholar
  55. Li RH, Ho MC, Tang TC, Chang CF (2012) Development of the betel nut dependency scale (BNDS). Chin J Psychol 54:331–348Google Scholar
  56. Li X, Lu ZL, D'Argembeau A, Ng M, Bechara A (2010) The Iowa gambling task in fMRI images. Hum Brain Mapp 31(3):410–423.  https://doi.org/10.1002/hbm.20875 PubMedPubMedCentralGoogle Scholar
  57. Liu T, Li J-j, Zhao Z-g, Zhong Y, Zhang Z-q, Xu Q, Yang G-s, Lu G-m, Pan S-y, Chen F (2016a) Betel quid dependence is associated with functional connectivity changes of the anterior cingulate cortex: a resting-state fMRI study. J Transl Med 14:1.  https://doi.org/10.1186/s12967-016-0784-1 CrossRefGoogle Scholar
  58. Liu T, Li J-j, Zhao Z-y, Yang G-s, Pan M-j, Li C-q, Pan S-y, Chen F (2016b) Altered spontaneous brain activity in betel quid dependence: a resting-state functional magnetic resonance imaging study. Medicine 95(5):e2638CrossRefPubMedPubMedCentralGoogle Scholar
  59. Liu T, Li J, Zhang Z, Xu Q, Lu G, Huang S, Pan M, Chen F (2016c) Altered long-and short-range functional connectivity in patients with betel quid dependence: a resting-state functional MRI study. Cell Physiol Biochem 40(6):1626–1636.  https://doi.org/10.1159/000453212 CrossRefPubMedGoogle Scholar
  60. Liu T, Li J, Huang S, Zhao Z, Yang G, Pan M, Li C, Chen F, Pan S (2015) Neurochemical abnormalities in anterior cingulate cortex on betel quid dependence: a 2D 1H MRS investigation. Am J Transl Res 7:2795PubMedPubMedCentralGoogle Scholar
  61. Lo CY, He Y, Lin CP (2011) Graph theoretical analysis of human brain structural networks. Rev Neurosci 22:551–563CrossRefPubMedGoogle Scholar
  62. McClernon FJ, Kozink RV, Lutz AM, Rose JE (2009) 24-h smoking abstinence potentiates fMRI-BOLD activation to smoking cues in cerebral cortex and dorsal striatum. Psychopharmacology 204(1):25–35.  https://doi.org/10.1007/s00213-008-1436-9 CrossRefPubMedGoogle Scholar
  63. Menon V (2015) Salience network. Brain Mapp 2:597–611CrossRefGoogle Scholar
  64. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214(5-6):655–667.  https://doi.org/10.1007/s00429-010-0262-0 CrossRefPubMedPubMedCentralGoogle Scholar
  65. MHW (2008) 905 betel nut chewing. Retrieved from https://www.mohw.gov.tw/dl-37747-2317188e-1f02-407b-a54a-ef4d0f663473.html
  66. Moerel M, De Martino F, Formisano E (2014) An anatomical and functional topography of human auditory cortical areas. Front Neurosci 8:225CrossRefPubMedPubMedCentralGoogle Scholar
  67. Naqvi NH, Bechara A (2010) The insula and drug addiction: an interoceptive view of pleasure, urges, and decision-making. Brain Struct Funct 214(5-6):435–450.  https://doi.org/10.1007/s00429-010-0268-7 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Naqvi NH, Rudrauf D, Damasio H, Bechara A (2007) Damage to the insula disrupts addiction to cigarette smoking. Science 315(5811):531–534.  https://doi.org/10.1126/science.1135926 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Osborne PG, Ko Y-C, Wu M-T, Lee C-H (2017) Intoxication and substance use disorder to Areca catechu nut containing betel quid: a review of epidemiological evidence, pharmacological basis and social factors influencing quitting strategies. Drug Alcohol Depend 179:187–197.  https://doi.org/10.1016/j.drugalcdep.2017.06.039 CrossRefPubMedGoogle Scholar
  70. Paulus MP, Stewart JL (2014) Interoception and drug addiction. Neuropharmacology 76:342–350.  https://doi.org/10.1016/j.neuropharm.2013.07.002 CrossRefPubMedGoogle Scholar
  71. Phelps EA (2004) Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 14(2):198–202.  https://doi.org/10.1016/j.conb.2004.03.015 CrossRefPubMedGoogle Scholar
  72. Philip NS, Kuras YI, Valentine TR, Sweet LH, Tyrka AR, Price LH, Carpenter LL (2013) Regional homogeneity and resting state functional connectivity: associations with exposure to early life stress. Psychiatry Res 214(3):247–253.  https://doi.org/10.1016/j.pscychresns.2013.07.013 CrossRefPubMedGoogle Scholar
  73. Raffaele KC, Asthana S, Berardi A, Haxby JV, Morris PP, Schapiro MB, Soncrant TT (1996) Differential response to the cholinergic agonist arecoline among different cognitive modalities in Alzheimer’s disease. Neuropsychopharmacology 15(2):163–170.  https://doi.org/10.1016/0893-133X(95)00179-H CrossRefPubMedGoogle Scholar
  74. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682.  https://doi.org/10.1073/pnas.98.2.676 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Renier LA, Anurova I, De Volder AG, Carlson S, VanMeter J, Rauschecker JP (2010) Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind. Neuron 68(1):138–148.  https://doi.org/10.1016/j.neuron.2010.09.021 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54(1):25–53.  https://doi.org/10.1146/annurev.psych.54.101601.145237 CrossRefPubMedGoogle Scholar
  77. Saunders JB, Aasland OG, Babor TF, Grant M (1993) Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption—II. Addiction 88(6):791–804.  https://doi.org/10.1111/j.1360-0443.1993.tb02093.x CrossRefPubMedGoogle Scholar
  78. See RE, Fuchs RA, Ledford CC, McLaughlin J (2003) Drug addiction, relapse, and the amygdala. Ann N Y Acad Sci 985:294–307CrossRefPubMedGoogle Scholar
  79. Shen B, Chiu M-C, Li S-H, Huang G-J, Liu L-J, Ho M-C (2016) Attentional bias to betel quid cues: an eye tracking study. Psychol Addict Behav 30(6):705–711.  https://doi.org/10.1037/adb0000191 CrossRefPubMedGoogle Scholar
  80. Sutherland MT, McHugh MJ, Pariyadath V, Stein EA (2012) Resting state functional connectivity in addiction: lessons learned and a road ahead. NeuroImage 62(4):2281–2295.  https://doi.org/10.1016/j.neuroimage.2012.01.117 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tang D, Fellows L, Small D, Dagher A (2012) Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies. Physiol Behav 106(3):317–324.  https://doi.org/10.1016/j.physbeh.2012.03.009 CrossRefPubMedGoogle Scholar
  82. Upadhyay J, Maleki N, Potter J, Elman I, Rudrauf D, Knudsen J, Wallin D, Pendse G, McDonald L, Griffin M, Anderson J, Nutile L, Renshaw P, Weiss R, Becerra L, Borsook D (2010) Alterations in brain structure and functional connectivity in prescription opioid-dependent patients. Brain 133(7):2098–2114.  https://doi.org/10.1093/brain/awq138 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Verdejo-Garcia A, Clark L, Dunn BD (2012) The role of interoception in addiction: a critical review. Neurosci Biobehav Rev 36(8):1857–1869.  https://doi.org/10.1016/j.neubiorev.2012.05.007 CrossRefPubMedGoogle Scholar
  84. Videbech P, Ravnkilde B (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161(11):1957–1966.  https://doi.org/10.1176/appi.ajp.161.11.1957 CrossRefPubMedGoogle Scholar
  85. Volkow ND, Wang G-J, Fowler JS, Tomasi D (2012) Addiction circuitry in the human brain. Annu Rev Pharmacol Toxicol 52(1):321–336.  https://doi.org/10.1146/annurev-pharmtox-010611-134625 CrossRefPubMedGoogle Scholar
  86. Wen C, Tsai S, Cheng T, Chen C, Levy D, Yang H, Eriksen M (2005) Uncovering the relation between betel quid chewing and cigarette smoking in Taiwan. Tob Control 14:i16–i22CrossRefPubMedPubMedCentralGoogle Scholar
  87. Weng J-C, Kao T-W, Huang G-J, Tyan Y-S, Tseng H-C, Ho M-C (2017) Evaluation of structural connectivity changes in betel-quid chewers using generalized q-sampling MRI. Psychopharmacology 234(13):1945–1955.  https://doi.org/10.1007/s00213-017-4602-0 CrossRefPubMedGoogle Scholar
  88. Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2(3):125–141.  https://doi.org/10.1089/brain.2012.0073 CrossRefPubMedGoogle Scholar
  89. Winstock AR (2002) Areca nut—abuse liability, dependence and public health. Addict Biol 7(1):133–138.  https://doi.org/10.1080/13556210120091509 CrossRefPubMedGoogle Scholar
  90. Yu R, Zhao L, Tian J, Qin W, Wang W, Yuan K, Li Q, Lu L (2013) Regional homogeneity changes in heavy male smokers: a resting-state functional magnetic resonance imaging study. Addict Biol 18(4):729–731.  https://doi.org/10.1111/j.1369-1600.2011.00359.x CrossRefPubMedGoogle Scholar
  91. Yuan F, Kong L, Zhu X, Jiang C, Fang C, Liao W (2017) Altered gray-matter volumes associated with betel quid dependence. Front Psych 8:139CrossRefGoogle Scholar
  92. Yue Y, Jia X, Hou Z, Zang Y, Yuan Y (2015) Frequency-dependent amplitude alterations of resting-state spontaneous fluctuations in late-onset depression. Biomed Res Int 2015:505479PubMedPubMedCentralGoogle Scholar
  93. Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic: identifying differences in brain networks. NeuroImage 53:1197–1207CrossRefPubMedGoogle Scholar
  94. Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. NeuroImage 22(1):394–400.  https://doi.org/10.1016/j.neuroimage.2003.12.030 CrossRefPubMedGoogle Scholar
  95. Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011) Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70(4):334–342.  https://doi.org/10.1016/j.biopsych.2011.05.018 CrossRefPubMedGoogle Scholar
  96. Zhang X, Zhu X, Wang X, Zhu X, Zhong M, Yi J, Rao H, Yao S (2014) First-episode medication-naive major depressive disorder is associated with altered resting brain function in the affective network. PLoS One 9(1):e85241.  https://doi.org/10.1371/journal.pone.0085241 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zhu X, Zhu Q, Jiang C, Shen H, Wang F, Liao W, Yuan F (2017) Disrupted resting-state default mode network in betel quid-dependent individuals. Front Psychol 8:84.  https://doi.org/10.3389/fpsyg.2017.00084 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ, Wang YF, Zang YF (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172(1):137–141.  https://doi.org/10.1016/j.jneumeth.2008.04.012 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jun-Cheng Weng
    • 1
    • 2
  • Yu-Syuan Chou
    • 3
  • Guo-Joe Huang
    • 4
  • Yeu-Sheng Tyan
    • 3
    • 5
  • Ming-Chou Ho
    • 4
    • 6
  1. 1.Department of Medical Imaging and Radiological SciencesChang Gung UniversityTaoyuanTaiwan
  2. 2.Department of PsychiatryChang Gung Memorial HospitalChiayiTaiwan
  3. 3.Department of Medical Imaging and Radiological SciencesChung Shan Medical UniversityTaichungTaiwan
  4. 4.Department of PsychologyChung Shan Medical UniversityTaichungTaiwan
  5. 5.Department of Medical ImagingChung Shan Medical University HospitalTaichungTaiwan
  6. 6.Clinical Psychological RoomChung Shan Medical University HospitalTaichungTaiwan

Personalised recommendations