Psychopharmacology

, Volume 235, Issue 1, pp 145–153 | Cite as

Hypericum perforatum extract modulates cortical plasticity in humans

  • Carmen Concerto
  • Hyunji Boo
  • Charles Hu
  • Priam Sandilya
  • Anita Krish
  • Eileen Chusid
  • Diego Coira
  • Eugenio Aguglia
  • Fortunato Battaglia
Original Investigation

Abstract

Background

Hypericum perforatum (HYP) extract is one of the most commonly used complementary alternative medicines (CAMs) for the treatment of mild-to-moderate depression. Non-invasive brain stimulation protocols can be used to investigate the effect of psychoactive substances on the human brain. In this study, we explored the effect of a single dose of HYP extract (WS 5570) intake on corticospinal excitability and plasticity in humans.

Methods

Twenty-eight healthy subjects were required to intake 900 mg of either HYP extract or placebo. Cortical excitability was assessed using single and paired transcranial magnetic stimulation (TMS). The electrophysiological parameters of motor threshold, recruitment of motor-evoked potentials (MEPs), cortical silent period (CSP), short interval intracortical inhibition (SICI), and intracortical facilitation (ICF) were tested before and 2 and 5 h after the oral intake. Spinal and neuromuscular excitability and peripheral nerve excitability were measured by F response and M-wave. Cortical plasticity was induced using transcranial direct current stimulation (tDCS). Subjects received either HYP extract or placebo before anodal and cathodal tDCS of the primary motor cortex. Plasticity was assessed by MEP amplitudes.

Results

HYP extract reversed cathodal tDCS-induced long-term depression (LTD)-like plasticity into facilitation, as compared to placebo. HYP extract did not have a significant effect on anodal tDCS-induced plasticity and TMS measures of motor cortex and spinal/neuromuscular excitability.

Conclusions

Our findings suggest that a single oral dose of HYP extract modulates cortical plasticity in healthy subjects and provide new insight into its possible mechanism of action in humans.

Keywords

Hypericum perforatum extract TMS tDCS Cortical plasticity 

Notes

Acknowledgements

We thank the volunteers that participated in this study.

Compliance with ethical standards

All participants provided their written informed consent. All the procedures were approved by the local ethics committee and complied with the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Batsikadze G, Paulus W, Kuo MF, Nitsche MA (2013) Effect of serotonin on paired associative stimulation-induced plasticity in the human motor cortex. Neuropsychopharmacology 38:2260–2267CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bhagya V, Srikumar BN, Raju TR, Rao BS (2011) Chronic escitalopram treatment restores spatial learning, monoamine levels, and hippocampal long-term potentiation in an animal model of depression. Psychopharmacology 214:477–494CrossRefPubMedGoogle Scholar
  3. Butterweck V, Schmidt M (2007) St. John’s wort: role of active compounds for its mechanism of action and efficacy. Wiener medizinische Wochenschrift (1946) 157:356–361CrossRefGoogle Scholar
  4. Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nat Rev Neurosci 11:459–473CrossRefPubMedGoogle Scholar
  5. Crupi R, Mazzon E, Marino A, La Spada G, Bramanti P, Battaglia F, Cuzzocrea S, Spina E (2011) Hypericum perforatum treatment: effect on behaviour and neurogenesis in a chronic stress model in mice. BMC Complement Altern Med 11:7CrossRefPubMedPubMedCentralGoogle Scholar
  6. Daskalakis ZJ, Christensen BK, Fitzgerald PB, Moller B, Fountain SI, Chen R (2008) Increased cortical inhibition in persons with schizophrenia treated with clozapine. J Psychopharmacol 22:203–209CrossRefPubMedGoogle Scholar
  7. Eichhammer P, Langguth B, Wiegand R, Kharraz A, Frick U, Hajak G (2003) Allelic variation in the serotonin transporter promoter affects neuromodulatory effects of a selective serotonin transporter reuptake inhibitor (SSRI). Psychopharmacology 166:294–297CrossRefPubMedGoogle Scholar
  8. Fresnoza S, Paulus W, Nitsche MA, Kuo MF (2014) Nonlinear dose-dependent impact of D1 receptor activation on motor cortex plasticity in humans. J Neurosci 34:2744–2753CrossRefPubMedGoogle Scholar
  9. Harmer CJ, Duman RS, Cowen PJ (2017) How do antidepressants work? New perspectives for refining future treatment approaches, Lancet PsychiatryGoogle Scholar
  10. Herwig U, Brauer K, Connemann B, Spitzer M, Schonfeldt-Lecuona C (2002) Intracortical excitability is modulated by a norepinephrine-reuptake inhibitor as measured with paired-pulse transcranial magnetic stimulation. Psychopharmacology 164:228–232CrossRefPubMedGoogle Scholar
  11. Hu H, Real E, Takamiya K, Kang MG, Ledoux J, Huganir RL, Malinow R (2007) Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell 131:160–173CrossRefPubMedGoogle Scholar
  12. Ilic TV, Korchounov A, Ziemann U (2002) Complex modulation of human motor cortex excitability by the specific serotonin re-uptake inhibitor sertraline. Neurosci Lett 319:116–120CrossRefPubMedGoogle Scholar
  13. Jang HJ, Cho KH, Park SW, Kim MJ, Yoon SH, Rhie DJ (2010) Effects of serotonin on the induction of long-term depression in the rat visual cortex. Korean J Physiol Pharmacol 14:337–343CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kalb R, Trautmann-Sponsel RD, Kieser M (2001) Efficacy and tolerability of hypericum extract WS 5572 versus placebo in mildly to moderately depressed patients. A randomized double-blind multicenter clinical trial Pharmacopsychiatry 34:96–103PubMedGoogle Scholar
  15. Kasper S, Anghelescu IG, Szegedi A, Dienel A, Kieser M (2006) Superior efficacy of St John’s wort extract WS 5570 compared to placebo in patients with major depression: a randomized, double-blind, placebo-controlled, multi-center trial [ISRCTN77277298]. BMC Med 4:14CrossRefPubMedPubMedCentralGoogle Scholar
  16. Katsuki H, Izumi Y, Zorumski CF (1997) Noradrenergic regulation of synaptic plasticity in the hippocampal CA1 region. J Neurophysiol 77:3013–3020CrossRefPubMedGoogle Scholar
  17. Kemp A, Manahan-Vaughan D (2005) The 5-hydroxytryptamine4 receptor exhibits frequency-dependent properties in synaptic plasticity and behavioural metaplasticity in the hippocampal CA1 region in vivo. Cereb Cortex 15:1037–1043CrossRefPubMedGoogle Scholar
  18. Kessler RC, Soukup J, Davis RB, Foster DF, Wilkey SA, Van Rompay MI, Eisenberg DM (2001) The use of complementary and alternative therapies to treat anxiety and depression in the United States. Am J Psychiatry 158:289–294CrossRefPubMedGoogle Scholar
  19. Kojic L, Gu Q, Douglas RM, Cynader MS (1997) Serotonin facilitates synaptic plasticity in kitten visual cortex: an in vitro study. Brain Res Dev Brain Res 101:299–304CrossRefPubMedGoogle Scholar
  20. Korol DL, Gold PE (2008) Epinephrine converts long-term potentiation from transient to durable form in awake rats. Hippocampus 18:81–91CrossRefPubMedGoogle Scholar
  21. Kuhn M, Mainberger F, Feige B, Maier JG, Mall V, Jung NH, Reis J, Kloppel S, Normann C, Nissen C (2016) State-dependent partial occlusion of cortical LTP-like plasticity in major depression. Neuropsychopharmacology 41:1521–1529CrossRefPubMedGoogle Scholar
  22. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kuo HI, Paulus W, Batsikadze G, Jamil A, Kuo MF, Nitsche MA (2016) Chronic enhancement of serotonin facilitates excitatory transcranial direct current stimulation-induced neuroplasticity. Neuropsychopharmacology 41:1223–1230CrossRefPubMedGoogle Scholar
  24. Kuo HI, Paulus W, Batsikadze G, Jamil A, Kuo MF, Nitsche MA (2017) Acute and chronic effects of noradrenergic enhancement on transcranial direct current stimulation-induced neuroplasticity in humans. J Physiol 595:1305–1314CrossRefPubMedGoogle Scholar
  25. Lecrubier Y, Clerc G, Didi R, Kieser M (2002) Efficacy of St. John’s wort extract WS 5570 in major depression: a double-blind, placebo-controlled trial. Am J Psychiatry 159:1361–1366CrossRefPubMedGoogle Scholar
  26. Leuner K, Kazanski V, Muller M, Essin K, Henke B, Gollasch M, Harteneck C, Muller WE (2007) Hyperforin—a key constituent of St. John’s wort specifically activates TRPC6 channels. FASEB J 21:4101–4111CrossRefPubMedGoogle Scholar
  27. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21CrossRefPubMedGoogle Scholar
  28. Manganotti P, Zanette G, Bonato C, Tinazzi M, Polo A, Fiaschi A (1997) Crossed and direct effects of digital nerves stimulation on motor evoked potential: a study with magnetic brain stimulation. Electroencephalogr Clin Neurophysiol 105:280–289CrossRefPubMedGoogle Scholar
  29. Marzo A, Bai J, Caboche J, Vanhoutte P, Otani S (2010) Cellular mechanisms of long-term depression induced by noradrenaline in rat prefrontal neurons. Neuroscience 169:74–86CrossRefPubMedGoogle Scholar
  30. Mennini T, Gobbi M (2004) The antidepressant mechanism of Hypericum perforatum. Life Sci 75:1021–1027CrossRefPubMedGoogle Scholar
  31. Mockett BG, Guevremont D, Williams JM, Abraham WC (2007) Dopamine D1/D5 receptor activation reverses NMDA receptor-dependent long-term depression in rat hippocampus. J Neurosci 27:2918–2926CrossRefPubMedGoogle Scholar
  32. Monte-Silva K, Liebetanz D, Grundey J, Paulus W, Nitsche MA (2010) Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. J Physiol 588:3415–3424CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mori K, Togashi H, Kojima T, Matsumoto M, Ohashi S, Ueno K, Yoshioka M (2001) Different effects of anxiolytic agents, diazepam and 5-HT(1A) agonist tandospirone, on hippocampal long-term potentiation in vivo. Pharmacol Biochem Behav 69:367–372CrossRefPubMedGoogle Scholar
  34. Muller WE (2003) Current St John’s wort research from mode of action to clinical efficacy. Pharmacol Res 47:101–109CrossRefPubMedGoogle Scholar
  35. Muller WE, Rolli M, Schafer C, Hafner U (1997) Effects of hypericum extract (LI 160) in biochemical models of antidepressant activity. Pharmacopsychiatry 30(Suppl 2):102–107CrossRefPubMedGoogle Scholar
  36. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1:206–223CrossRefPubMedGoogle Scholar
  37. Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, Henning S, Tergau F, Paulus W (2003) Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 553:293–301CrossRefPubMedPubMedCentralGoogle Scholar
  38. Nitsche MA, Kuo MF, Karrasch R, Wachter B, Liebetanz D, Paulus W (2009) Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biol Psychiatry 66:503–508CrossRefPubMedGoogle Scholar
  39. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633–639CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901CrossRefPubMedGoogle Scholar
  41. Normann C, Clark K (2005) Selective modulation of Ca(2+) influx pathways by 5-HT regulates synaptic long-term plasticity in the hippocampus. Brain Res 1037:187–193CrossRefPubMedGoogle Scholar
  42. Normann C, Schmitz D, Furmaier A, Doing C, Bach M (2007) Long-term plasticity of visually evoked potentials in humans is altered in major depression. Biol Psychiatry 62:373–380CrossRefPubMedGoogle Scholar
  43. Ohashi S, Matsumoto M, Otani H, Mori K, Togashi H, Ueno K, Kaku A, Yoshioka M (2002) Changes in synaptic plasticity in the rat hippocampo-medial prefrontal cortex pathway induced by repeated treatments with fluvoxamine. Brain Res 949:131–138CrossRefPubMedGoogle Scholar
  44. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  45. Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M, Pascual-Leone A, Rosenow F, Rothwell JC, Ziemann U (2008) State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul 1:151–163CrossRefPubMedGoogle Scholar
  46. Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33:88–109CrossRefPubMedGoogle Scholar
  47. Porter RJ, Gallagher P, Thompson JM, Young AH (2003) Neurocognitive impairment in drug-free patients with major depressive disorder. Br J Psychiatry 182:214–220CrossRefPubMedGoogle Scholar
  48. Ravindran AV, Balneaves LG, Faulkner G, Ortiz A, McIntosh D, Morehouse RL, Ravindran L, Yatham LN, Kennedy SH, Lam RW, MacQueen GM, Milev RV, Parikh SV (2016) Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: section 5. complementary and alternative medicine treatments. Can J Psychiatr 61:576–587CrossRefGoogle Scholar
  49. Robol E, Fiaschi A, Manganotti P (2004) Effects of citalopram on the excitability of the human motor cortex: a paired magnetic stimulation study. J Neurol Sci 221:41–46CrossRefPubMedGoogle Scholar
  50. Ross SM (2014) Psychophytomedicine: an overview of clinical efficacy and phytopharmacology for treatment of depression, anxiety and insomnia. Holist Nurs Pract 28:275–280CrossRefPubMedGoogle Scholar
  51. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. committee. Clin Neurophysiol 126:1071–1107CrossRefPubMedGoogle Scholar
  52. Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W (1999) Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:97–103PubMedGoogle Scholar
  53. Ryan B, Musazzi L, Mallei A, Tardito D, Gruber SH, El Khoury A, Anwyl R, Racagni G, Mathe AA, Rowan MJ, Popoli M (2009) Remodelling by early-life stress of NMDA receptor-dependent synaptic plasticity in a gene-environment rat model of depression. Int J Neuropsychopharmacol 12:553–559CrossRefPubMedGoogle Scholar
  54. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809CrossRefPubMedGoogle Scholar
  55. Schmidt M, Butterweck V (2015) The mechanisms of action of St. John’s wort: an update. Wien Med Wochenschr 165:229–235CrossRefPubMedGoogle Scholar
  56. Schulte-Lobbert S, Holoubek G, Muller WE, Schubert-Zsilavecz M, Wurglics M (2004) Comparison of the synaptosomal uptake inhibition of serotonin by St John’s wort products. J Pharm Pharmacol 56:813–818CrossRefPubMedGoogle Scholar
  57. Schulz H, Jobert M, Hubner WD (1998) The quantitative EEG as a screening instrument to identify sedative effects of single doses of plant extracts in comparison with diazepam. Phytomedicine 5:449–458CrossRefPubMedGoogle Scholar
  58. Szegedi A, Kohnen R, Dienel A, Kieser M (2005) Acute treatment of moderate to severe depression with hypericum extract WS 5570 (St John’s wort): randomised controlled double blind non-inferiority trial versus paroxetine. BMJ 330:503CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tully K, Li Y, Tsvetkov E, Bolshakov VY (2007) Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc Natl Acad Sci U S A 104:14146–14150CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wonnemann M, Singer A, Siebert B, Muller WE (2001) Evaluation of synaptosomal uptake inhibition of most relevant constituents of St. John’s wort. Pharmacopsychiatry 34(Suppl 1):S148–S151CrossRefPubMedGoogle Scholar
  61. Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, Muller-Dahlhaus F (2014) TMS and drugs revisited 2014. Clin NeurophysiolGoogle Scholar
  62. Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, Muller-Dahlhaus F (2015) TMS and drugs revisited 2014. Clin Neurophysiol 126:1847–1868CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Interprofessional Health Sciences and Health Administration, School of Health and Medical SciencesSeton Hall UniversitySouth OrangeUSA
  2. 2.Pre-clinical sciencesNew York College of Podiatric MedicineNew YorkUSA
  3. 3.Department of Psychiatry and Behavioral MedicineHackensack-Meridian University Medical CenterHackensackUSA
  4. 4.Department of Clinical and Experimental Medicine, Psychiatry UnitUniversity of CataniaCataniaItaly

Personalised recommendations