Advertisement

Psychopharmacology

, Volume 234, Issue 21, pp 3217–3228 | Cite as

Risperidone and aripiprazole alleviate prenatal valproic acid-induced abnormalities in behaviors and dendritic spine density in mice

  • Yuta Hara
  • Yukio Ago
  • Atsuki Taruta
  • Shigeru Hasebe
  • Haruki Kawase
  • Wataru Tanabe
  • Shinji Tsukada
  • Takanobu Nakazawa
  • Hitoshi Hashimoto
  • Toshio Matsuda
  • Kazuhiro TakumaEmail author
Original Investigation

Abstract

Rationale

Rodents exposed prenatally to valproic acid (VPA) exhibit autism spectrum disorder (ASD)-like behavioral abnormalities. We recently found that prenatal VPA exposure causes hypofunction of the prefrontal dopaminergic system in mice. This suggests that the dopaminergic system may be a potential pharmacological target for treatment of behavioral abnormalities in ASD patients.

Objectives

In the present study, we examined the effects of antipsychotic drugs, which affect the dopaminergic system, on the social interaction deficits, recognition memory impairment, and reduction in dendritic spine density in the VPA mouse model of ASD.

Results

Both acute and chronic administrations of the atypical antipsychotic drugs risperidone and aripiprazole increased prefrontal dopamine (DA) release, while the typical antipsychotic drug haloperidol did not. Chronic risperidone and aripiprazole, but not haloperidol, increased the expression of c-Fos in the prefrontal cortex, although they all increased c-Fos expression in the striatum. Chronic, but not acute, administrations of risperidone and aripiprazole improved the VPA-induced social interaction deficits and recognition memory impairment, as well as the reduction in dendritic spine density in the prefrontal cortex and hippocampus. In contrast, chronic administration of haloperidol did not ameliorate VPA-induced abnormalities in behaviors and dendritic spine density.

Conclusions

These findings indicate that chronic risperidone and aripiprazole treatments improve VPA-induced abnormalities in behaviors and prefrontal dendritic spine density, which may be mediated by repeated elevation of extracellular DA in the prefrontal cortex. Our results also imply that loss of prefrontal dendritic spines may be involved in the abnormal behaviors in the VPA mouse model of ASD.

Keywords

Valproic acid (VPA) Autism spectrum disorder (ASD) Prefrontal dopamine Risperidone Aripiprazole Haloperidol 

Notes

Acknowledgments

This study was supported in part by JSPS KAKENHI [JP13J05359 (YH), JP25460099 (YA), JP26293020 (HH), JP26670122 (HH), JP15H01288 (HH), and JP16K15126 (KT)], the Neuropsychiatry Drug Discovery Consortium established by Dainippon Sumitomo Pharma Co., Ltd. (Japan) with Osaka University (TM, HH), Dainippon Sumitomo Pharma Joint Research Fund (KT), Uehara Memorial Foundation (Japan) (KT), the JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (S2603; HH), and the SRPBS and Brain/MINDS from AMED (HH).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

213_2017_4703_MOESM1_ESM.pdf (478 kb)
Supplementary Fig. S1 Effects of acute and chronic administration of antipsychotic drugs on extracellular noradrenaline (NA) levels in the prefrontal cortex of mice prenatally exposed to VPA. Male offspring, born to mothers treated with saline (a, c) or VPA (500 mg/kg, i.p.) (b, d) on gestation day 12.5, were subjected to the experiments at 8 weeks of age. Risperidone (0.2 mg/kg), aripiprazole (3 mg/kg), haloperidol (0.1 mg/kg) or vehicle was administered intraperitoneally at 0 min (arrow). Extracellular NA levels in the prefrontal cortex of male offspring were measured by microdialysis. (a, b) Changes after first administration. (c, d) Changes at the final day of 2 week-chronic administration. Values indicate the means ± SEM (n = 6). P < 0.05, †† P < 0.01, ††† P < 0.001, compared to the vehicle-treated mice. (PDF 477 kb)
213_2017_4703_MOESM2_ESM.pdf (425 kb)
Supplementary Fig. S2 Effects of acute and chronic administration of antipsychotic drugs on extracellular serotonin (5-HT) levels in the prefrontal cortex of mice prenatally exposed to VPA. Male offspring, born to mothers treated with saline (a, c) or VPA (500 mg/kg, i.p.) (b, d) on gestation day 12.5, were subjected to the experiments at 8 weeks of age. Risperidone (0.2 mg/kg), aripiprazole (3 mg/kg), haloperidol (0.1 mg/kg) or vehicle was administered intraperitoneally at 0 min (arrow). Extracellular 5-HT levels in the prefrontal cortex of male offspring were measured by microdialysis. (a, b) Changes after first administration. (c, d) Changes at the final day of 2 week-chronic administration. Values indicate the means ± SEM (n = 6). P < 0.05, compared to the vehicle-treated mice. (PDF 424 kb)

References

  1. Adachi YU, Yamada S, Satomoto M, Higuchi H, Watanabe K, Kazama T, Mimuro S, Sato S (2008) Isoflurane anesthesia inhibits clozapine- and risperidone-induced dopamine release and anesthesia-induced changes in dopamine metabolism was modified by fluoxetine in the rat striatum: an in vivo microdialysis study. Neurochem Int 52:384–391. doi: 10.1016/j.neuint.2007.07.012 CrossRefPubMedGoogle Scholar
  2. Ago Y, Nakamura S, Baba A, Matsuda T (2005) Sulpiride in combination with fluvoxamine increases in vivo dopamine release selectively in rat prefrontal cortex. Neuropsychopharmacology 30:43–51. doi: 10.1038/sj.npp.1300567 CrossRefPubMedGoogle Scholar
  3. Amodeo DA, Jones JH, Sweeney JA, Ragozzino ME (2014) Risperidone and the 5-HT2A receptor antagonist M100907 improve probabilistic reversal learning in BTBR T + tf/J mice. Autism Res 7:555–567. doi: 10.1002/aur.1395 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bortolozzi A, Díaz-Mataix L, Toth M, Celada P, Artigas F (2007) In vivo actions of aripiprazole on serotonergic and dopaminergic systems in rodent brain. Psychopharmacology 191:745–758. doi: 10.1007/s00213-007-0698-y CrossRefPubMedGoogle Scholar
  5. Bortolozzi A, Masana M, Díaz-Mataix L, Cortés R, Scorza MC, Gingrich JA, Toth M, Artigas F (2010) Dopamine release induced by atypical antipsychotics in prefrontal cortex requires 5-HT1A receptors but not 5-HT2A receptors. Int J Neuropsychopharmacol 13:1299–1314. doi: 10.1017/S146114571000009X CrossRefPubMedGoogle Scholar
  6. Broadbent NJ, Gaskin S, Squire LR, Clark RE (2010) Object recognition memory and the rodent hippocampus. Learn Mem 17(1):5–11Google Scholar
  7. Burris KD, Molski TF, Xu C, Ryan E, Tottori K, Kikuchi T, Yocca FD, Molinoff PB (2002) Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 302:381–389. doi: 10.1124/jpet.102.033175 CrossRefPubMedGoogle Scholar
  8. Chomiak T, Turner N, Hu B (2013) What we have learned about autism spectrum disorder from valproic acid. Pathol Res Int 2013:712758. doi: 10.1155/2013/712758 CrossRefGoogle Scholar
  9. DeVito LM, Balu DT, Kanter BR, Lykken C, Basu AC, Coyle JT, Eichenbaum H (2011) Serine racemase deletion disrupts memory for order and alters cortical dendritic morphology. Genes Brain Behav 10:210–222. doi: 10.1111/j.1601-183X.2010.00656.x CrossRefPubMedGoogle Scholar
  10. Diaz Heijtz R, Scott L, Forssberg H (2004) Alteration of dopamine D1 receptor-mediated motor inhibition and stimulation during development in rats is associated with distinct patterns of c-fos mRNA expression in the frontal-striatal circuitry. Eur J Neurosci 19:945–956. doi: 10.1111/j.0953-816X.2004.03154.x CrossRefPubMedGoogle Scholar
  11. Farrell MR, Holland FH, Shansky RM, Brenhouse HC (2016) Sex-specific effects of early life stress on social interaction and prefrontal cortex dendritic morphology in young rats. Behav Brain Res 310:119–125. doi: 10.1016/j.bbr.2016.05.009 CrossRefPubMedGoogle Scholar
  12. Ferdman N, Murmu RP, Bock J, Braun K, Leshem M (2007) Weaning age, social isolation, and gender, interact to determine adult explorative and social behavior, and dendritic and spine morphology in prefrontal cortex of rats. Behav Brain Res 18:174–182. doi: 10.1016/j.bbr.2007.03.011 CrossRefGoogle Scholar
  13. Fujimura M, Hashimoto K, Yamagami K (2000) The effect of the antipsychotic drug mosapramine on the expression of Fos protein in the rat brain: comparison with haloperidol, clozapine and risperidone. Life Sci 67:2865–2872. doi: 10.1016/S0024-3205(00)00872-9 CrossRefPubMedGoogle Scholar
  14. Gould GG, Hensler JG, Burke TF, Benno RH, Onaivi ES, Daws LC (2011) Density and function of central serotonin (5-HT) transporters, 5-HT1A and 5-HT2A receptors, and effects of their targeting on BTBR T+tf/J mouse social behavior. J Neurochem 116:291–303. doi: 10.1111/j.1471-4159.2010.07104.x CrossRefPubMedGoogle Scholar
  15. Hara Y, Maeda Y, Kataoka S, Ago Y, Takuma K, Matsuda T (2012) Effect of prenatal valproic acid exposure on cortical morphology in female mice. J Pharmacol Sci 118:543–546. doi: 10.1254/jphs.12025SC CrossRefPubMedGoogle Scholar
  16. Hara Y, Takuma K, Takano E, Katashiba K, Taruta A, Higashino K, Hashimoto H, Ago Y, Matsuda T (2015) Reduced prefrontal dopaminergic activity in valproic acid-treated mouse autism model. Behav Brain Res 289:39–47. doi: 10.1016/j.bbr.2015.04.022 CrossRefPubMedGoogle Scholar
  17. Hara Y, Ago Y, Taruta A, Katashiba K, Hasebe S, Takano E, Onaka Y, Hashimoto H, Matsuda T, Takuma K (2016) Improvement by methylphenidate and atomoxetine of social interaction deficits and recognition memory impairment in a mouse model of valproic acid-induced autism. Autism Res 9:926–939. doi: 10.1002/aur.1596 CrossRefPubMedGoogle Scholar
  18. Harfterkamp M, van de Loo-Neus G, Minderaa RB, van der Gaag RJ, Escobar R, Schacht A, Pamulapati S, Buitelaar JK, Hoekstra PJ (2012) A randomized double-blind study of atomoxetine versus placebo for attention-deficit/hyperactivity disorder symptoms in children with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry 51:733–741. doi: 10.1016/j.jaac.2012.04.011 CrossRefPubMedGoogle Scholar
  19. Hertel P, Nomikos GG, Iurlo M, Svensson TH (1996) Risperidone: regional effects in vivo on release and metabolism of dopamine and serotonin in the rat brain. Psychopharmacology 124:74–86. doi: 10.1007/BF02245607 CrossRefPubMedGoogle Scholar
  20. Huang GB, Zhao T, Gao XL, Zhang HX, Xu YM, Li H, Lv LX (2016) Effect of chronic social defeat stress on behaviors and dopamine receptor in adult mice. Prog Neuro-Psychopharmacol Biol Psychiatry 66:73–79. doi: 10.1016/j.pnpbp.2015.12.002 CrossRefGoogle Scholar
  21. Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O'Laughlin IA, Meltzer HY (2001) 5-HT2A and D2 receptor blockade increases cortical DA release via 5-HT1A receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76:1521–1531. doi: 10.1046/j.1471-4159.2001.00154.x CrossRefPubMedGoogle Scholar
  22. Kataoka S, Takuma K, Hara Y, Maeda Y, Ago Y, Matsuda T (2013) Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int J Neuropsychopharmacol 16:91–103. doi: 10.1017/S1461145711001714 CrossRefPubMedGoogle Scholar
  23. Kim KC, Kim P, Go HS, Choi CS, Yang SI, Cheong JH, ShinCY KKH (2011) The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. Toxicol Lett 201:137–142. doi: 10.1016/j.toxlet.2010.12.018 CrossRefPubMedGoogle Scholar
  24. Koda K, Ago Y, Cong Y, Kita Y, Takuma K, Matsuda T (2010) Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J Neurochem 114:259–270. doi: 10.1111/j.1471-4159.2010.06750.x PubMedGoogle Scholar
  25. Kulkarni VA, Firestein BL (2012) The dendritic tree and brain disorders. Mol Cell Neurosci 50:10–20. doi: 10.1016/j.mcn.2012.03.005 CrossRefPubMedGoogle Scholar
  26. Li XM, Perry KW, Wong DT, Bymaster FP (1998) Olanzapine increases in vivo dopamine and norepinephrine release in rat prefrontal cortex, nucleus accumbens and striatum. Psychopharmacology 136:153–161. doi: 10.1007/s002130050551 CrossRefPubMedGoogle Scholar
  27. Li Z, Ichikawa J, Dai J, Meltzer HY (2004) Aripiprazole, a novel antipsychotic drug, preferentially increases dopamine release in the prefrontal cortex and hippocampus in rat brain. Eur J Pharmacol 493:75–83. doi: 10.1016/j.ejphar.2004.04.028 CrossRefPubMedGoogle Scholar
  28. Li Z, Huang M, Prus AJ, Dai J, Meltzer HY (2007) 5-HT6 receptor antagonist SB-399885 potentiates haloperidol and risperidone-induced dopamine efflux in the medial prefrontal cortex or hippocampus. Brain Res 1134:70–78. doi: 10.1016/j.brainres.2006.11.060 CrossRefPubMedGoogle Scholar
  29. Marcus RN, Owen R, Kamen L, Manos G, McQuade RD, Carson WH, Aman MG (2009) A placebo-controlled, fixed-dose study of aripiprazole in children and adolescents with irritability associated with autistic disorder. J Am Acad Child Adolesc Psychiatry 48:1110–1119. doi: 10.1097/CHI.0b013e3181b76658 CrossRefPubMedGoogle Scholar
  30. McCracken JT, McGough J, Shah B, Cronin P, Hong D, Aman MG, Arnold LE, Lindsay R, Nash P, Hollway J, McDougle CJ, Posey D, Swiezy N, Kohn A, Scahill L, Martin A, Koenig K, Volkmar F, Carroll D, Lancor A, Tierney E, Ghuman J, Gonzalez NM, Grados M, Vitiello B, Ritz L, Davies M, Robinson J, McMahon D, Research Units on Pediatric Psychopharmacology Autism Network (2002) Risperidone in children with autism and serious behavioral problems. N Engl J Med 347:314–321. doi: 10.1056/NEJMoa013171 CrossRefPubMedGoogle Scholar
  31. Nagai T, Takuma K, Kamei H, Ito Y, Nakamichi N, Ibi D, Nakanishi Y, Murai M, Mizoguchi H, Nabeshima T, Yamada K (2007) Dopamine D1 receptors regulate protein synthesis-dependent long-term recognition memory via extracellular signal-regulated kinase 1/2 in the prefrontal cortex. Learn Mem 14:117–125. doi: 10.1101/lm.461407 CrossRefPubMedPubMedCentralGoogle Scholar
  32. O'Connor JJ, Lowry JP (2012) A comparison of the effects of the dopamine partial agonists aripiprazole and (−)-3-PPP with quinpirole on stimulated dopamine release in the rat striatum: studies using fast cyclic voltammetry in vitro. Eur J Pharmacol 686:60–65. doi: 10.1016/j.ejphar.2012.04.046 CrossRefPubMedGoogle Scholar
  33. Owen R, Sikich L, Marcus RN, Corey-Lisle P, Manos G, McQuade RD, Carson WH, Findling RL (2009) Aripiprazole in the treatment of irritability in children and adolescents with autistic disorder. Pediatrics 124:1533–1540. doi: 10.1542/peds.2008-3782 CrossRefPubMedGoogle Scholar
  34. Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, Sonnenblick LI, Gruver R, Almajano J, Bragin A, Golshani P, Trachtenberg JT, Peles E, Geschwind DH (2011) Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147:235–246. doi: 10.1016/j.cell.2011.08.040 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Penzes P, Cahill ME, Jones KA, Van Leeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293. doi: 10.1038/nn.2741 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Pereira A, Zhang B, Malcolm P, Sugiharto-Winarno A, Sundram S (2014) Quetiapine and aripiprazole signal differently to ERK, p90RSK and c-Fos in mouse frontal cortex and striatum: role of the EGF receptor. BMC Neurosci 15:30. doi: 10.1186/1471-2202-15-30 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Posey DJ, Aman MG, McCracken JT, Scahill L, Tierney E, Arnold LE, Vitiello B, Chuang SZ, Davies M, Ramadan Y, Witwer AN, Swiezy NB, Cronin P, Shah B, Carroll DH, Young C, Wheeler C, McDougle CJ (2007) Positive effects of methylphenidate on inattention and hyperactivity in pervasive developmental disorders: an analysis of secondary measures. Biol Psychiatry 61:538–544. doi: 10.1016/j.biopsych.2006.09.028 CrossRefPubMedGoogle Scholar
  38. Rossato JI, Radiske A, Kohler CA, Gonzalez C, Bevilaqua LR, Medina JH, Cammarota M (2013) Consolidation of object recognition memory requires simultaneous activation of dopamine D1/D5 receptors in the amygdala and medial prefrontal cortex but not in the hippocampus. Neurobiol Learn Mem 106:66–70. doi: 10.1016/j.nlm.2013.07.012 CrossRefPubMedGoogle Scholar
  39. Roullet FI, Lai JK, Foster JA (2013) In utero exposure to valproic acid and autism—a current review of clinical and animal studies. Neurotoxicol Teratol 36:47–56. doi: 10.1016/j.ntt.2013.01.004 CrossRefPubMedGoogle Scholar
  40. Schneider T, Przewłocki R (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30:80–89. doi: 10.1038/sj.npp.1300518 CrossRefPubMedGoogle Scholar
  41. Shea S, Turgay A, Carroll A, Schulz M, Orlik H, Smith I, Dunbar F (2004) Risperidone in the treatment of disruptive behavioral symptoms in children with autistic and other pervasive developmental disorders. Pediatrics 114:e634–e641. doi: 10.1542/peds.2003-0264-F CrossRefPubMedGoogle Scholar
  42. Takuma K, Hara Y, Kataoka S, Kawanai T, Maeda Y, Watanabe R, Takano E, Hayata-Takano A, Hashimoto H, Ago Y, Matsuda T (2014) Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism. Pharmacol Biochem Behav 126:43–49. doi: 10.1016/j.pbb.2014.08.013 CrossRefPubMedGoogle Scholar
  43. Teng BL, Nikolova VD, Riddick NV, Agster KL, Crowley JJ, Baker LK, Koller BH, Pedersen CA, Jarstfer MB, Moy SS (2016) Reversal of social deficits by subchronic oxytocin in two autism mouse models. Neuropharmacology 105:61–71. doi: 10.1016/j.neuropharm.2015.12.025 CrossRefPubMedGoogle Scholar
  44. Wagner GC, Reuhl KR, Cheh M, McRae P, Halladay AK (2006) A new neurobehavioral model of autism in mice: pre- and postnatal exposure to sodium valproate. J Autism Dev Disord 36:779–793. doi: 10.1007/s10803-006-0117-y CrossRefPubMedGoogle Scholar
  45. Walters DE, Chapman CD, Howard SG (1990) Development of haloperidol-induced dopamine release in the rat striatum using intracerebral dialysis. J Neurochem 54:181–186. doi: 10.1111/j.1471-4159.1990.tb13299.x CrossRefPubMedGoogle Scholar
  46. Wang HD, Deutch AY (2008) Dopamine depletion of the prefrontal cortex induces dendritic spine loss: reversal by atypical antipsychotic drug treatment. Neuropsychopharmacology 33:1276–1286. doi: 10.1038/sj.npp.1301521 CrossRefPubMedGoogle Scholar
  47. Wang D, Fu Q, Zhou Y, Xu B, Shi Q, Igwe B, Matt L, Hell JW, Wisely EV, Oddo S, Xiang YK (2013) β2 adrenergic receptor, protein kinase A (PKA) and c-Jun N-terminal kinase (JNK) signaling pathways mediate tau pathology in Alzheimer disease models. J Biol Chem 288:10298–10307. doi: 10.1074/jbc.M112.415141 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Watson DJ, Loiseau F, Ingallinesi M, Millan MJ, Marsden CA, Fone KC (2012) Selective blockade of dopamine D3 receptors enhances while D2 receptor antagonism impairs social novelty discrimination and novel object recognition in rats: a key role for the prefrontal cortex. Neuropsychopharmacology 37:770–786. doi: 10.1038/npp.2011.254 CrossRefPubMedGoogle Scholar
  49. Xu Y, Cao W, Zhou M, Li C, Luo Y, Wang H, Zhao R, Jiang S, Yang J, Liu Y, Wang X, Li X, Xiong W, Ma J, Peng S, Zeng Z, Li X, Tan M, Li G (2015) Inactivation of BRD7 results in impaired cognitive behavior and reduced synaptic plasticity of the medial prefrontal cortex. Behav Brain Res 286:1–10. doi: 10.1016/j.bbr.2015.02.031 CrossRefPubMedGoogle Scholar
  50. Yamada H, Kuroki T, Nakahara T, Hashimoto K, Tsutsumi T, Hirano M, Maeda H (2007) The dopamine D1 receptor agonist, but not the D2 receptor agonist, induces gene expression of Homer 1a in rat striatum and nucleus accumbens. Brain Res 1131:88–96. doi: 10.1016/j.brainres.2006.11.011 CrossRefPubMedGoogle Scholar
  51. Yoon DH, Yoon S, Kim D, Kim H, Baik JH (2015) Regulation of dopamine D2 receptor-mediated extracellular signal-regulated kinase signaling and spine formation by GABAA receptors in hippocampal neurons. Neurosci Lett 586:24–30. doi: 10.1016/j.neulet.2014.12.010 CrossRefPubMedGoogle Scholar
  52. Zocchi A, Fabbri D, Heidbreder CA (2005) Aripiprazole increases dopamine but not noradrenaline and serotonin levels in the mouse prefrontal cortex. Neurosci Lett 387:157–161. doi: 10.1016/j.neulet.2005.06.035 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yuta Hara
    • 1
  • Yukio Ago
    • 1
  • Atsuki Taruta
    • 1
  • Shigeru Hasebe
    • 2
  • Haruki Kawase
    • 1
  • Wataru Tanabe
    • 1
  • Shinji Tsukada
    • 1
  • Takanobu Nakazawa
    • 1
    • 2
  • Hitoshi Hashimoto
    • 1
    • 3
    • 4
  • Toshio Matsuda
    • 5
  • Kazuhiro Takuma
    • 2
    • 3
    Email author
  1. 1.Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
  2. 2.Department of Pharmacology, Graduate School of DentistryOsaka UniversityOsakaJapan
  3. 3.United Graduate School of Child DevelopmentOsaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiOsakaJapan
  4. 4.Division of Bioscience, Institute for Datability ScienceOsaka UniversityOsakaJapan
  5. 5.Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan

Personalised recommendations