, Volume 234, Issue 19, pp 2971–2978 | Cite as

Melatonin increases reactive aggression in humans

  • Jinting Liu
  • Ru Zhong
  • Wei Xiong
  • Haibo Liu
  • Christoph Eisenegger
  • Xiaolin ZhouEmail author
Original Investigation



Melatonin, a hormone released preferentially by the pineal gland during the night, affects circadian rhythms and aging processes. As animal studies have shown that melatonin increases resident-intruder aggression, this study aimed to investigate the impact of melatonin treatment on human aggression.


In a double-blind, randomized, placebo-controlled between-participant design, 63 healthy male volunteers completed the Taylor Aggression Paradigm (TAP) after oral administration of melatonin or placebo.


We found that when given the opportunity to administer high or low punishments to an opponent, participants who ingested melatonin selected the high punishment more often than those who ingested placebo. The increased reactive aggression under melatonin administration remained after controlling for inhibitory ability, trait aggression, trait impulsiveness, circadian preference, perceptual sensibility to noise, and changes in subjective sleepiness and emotional states.


This study provides novel and direct evidence for the involvement of melatonin in human social processes.


Melatonin Reactive aggression Taylor aggression paradigm Antisocial behavior Circadian rhythm 



We thank Professor Drew Dawson and Dr. Xuan Zhou from the University of South Australia for their suggestions on melatonin administration and Dr. Philip Blue for the preparation of the manuscript.

Author contributions

J. L. and R. Z. designed the experiment and analyzed the data, under the supervision of X. Z., J. L., R. Z., and W. X., and H. L. performed the experiment. J. L., C. E., and X. Z. wrote the manuscript.

Compliance with ethical standards

The experiment was performed in accordance with the Declaration of Helsinki and was approved by the Ethics Committee of the Department of Psychology, Peking University.


This study was supported by grants from the National Basic Research Program of China (973 Program: 2015CB856400) and National Natural Science Foundation of China (31630034) to Xiaolin Zhou and the National Natural Science Foundation of China (31600928) to Jinting Liu.

Conflict of interests

The authors declared that they had no conflicts of interest.

Supplementary material

213_2017_4693_MOESM1_ESM.doc (168 kb)
ESM 1 (DOC 168 kb)


  1. Abercrombie HC, Kalin NH, Davidson RJ (2005) Acute cortisol elevations cause heightened arousal ratings of objectively nonarousing stimuli. Emotion 5:354–359. doi: 10.1037/1528-3542.5.3.354 CrossRefPubMedGoogle Scholar
  2. Anderson CA, Bushman BJ (2002) Human aggression. Annu Rev Psychol 53:27–51. doi: 10.1146/annurev.psych.53.100901.135231 CrossRefPubMedGoogle Scholar
  3. Berkowitz L (1993) Aggression: its causes, consequences, and control. Temple University Press, New YorkGoogle Scholar
  4. Bluemke M, Teige-Mocigemba S (2015) Automatic processes in aggression: conceptual and assessment issues. Aggress Behav 41:44–50. doi: 10.1002/ab.21576 CrossRefPubMedGoogle Scholar
  5. Bodenhausen GV (1990) Stereotypes as judgmental heuristics: evidence of circadian variations in discrimination. Psychol Sci 1:319–322. doi: 10.1111/j.1467-9280.1990.tb00226.x CrossRefGoogle Scholar
  6. Brzezinski A (1997) Melatonin in humans. N Engl J Med 336:186–195. doi: 10.1056/NEJM199701163360306 CrossRefPubMedGoogle Scholar
  7. Buss DM, Shackelford TK (1997) Human aggression in evolutionary psychological perspective. Clin Psychol Rev 17:605–619. doi: 10.1016/S0272-7358(97)00037-8 CrossRefPubMedGoogle Scholar
  8. Cajochen C, Kr?uchi K, Wirz-Justice A (2003) Role of melatonin in the regulation of human circadian rhythms and sleep. J Neuroendocrinol 15:432–437. doi:  10.1046/j.1365-2826.2003.00989.x
  9. Cohn EG, Rotton J (1997) Assault as a function of time and temperature: a moderator-variable time-series analysis. J Pers Soc Psychol 72:1322–1334. doi: 10.1037/0022-3514.72.6.1322 CrossRefGoogle Scholar
  10. Demas GE, Polacek KM, Durazzo A, Jasnow AM (2004) Adrenal hormones mediate melatonin-induced increases in aggression in male Siberian hamsters (Phodopus sungorus). Horm Behav 46:582–591. doi: 10.1016/j.yhbeh.2004.07.001 CrossRefPubMedGoogle Scholar
  11. Dollins AB, Zhdanova IV, Wurtman RJ et al (1994) Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance. Proc Natl Acad Sci U S A 91:1824–1828. doi: 10.1073/pnas.91.5.1824 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Giancola PR (2004) Executive functioning and alcohol-related aggression. J Abnorm Psychol 113:541–555. doi: 10.1037/0021-843X.113.4.541 CrossRefPubMedGoogle Scholar
  13. Giancola PR, Parrott DJ (2008) Further evidence for the validity of the Taylor Aggression Paradigm. Aggress Behav 34:214–229. doi: 10.1002/ab.20235 CrossRefPubMedGoogle Scholar
  14. Goldman BD (2001) Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythm 16:283–301. doi: 10.1177/074873001129001980 CrossRefGoogle Scholar
  15. Gunia BC, Barnes CM, Sah S (2014) The morality of larks and owls: unethical behavior depends on chronotype as well as time of day. Psychol Sci 25:2272–2274. doi: 10.1177/0956797614541989 CrossRefPubMedGoogle Scholar
  16. Haffmans PMJ, Sival RC, Lucius SAP et al (2001) Bright light therapy and melatonin in motor restless behaviour in dementia: a placebo-controlled study. Int J Geriatr Psychiatry 16:106–110. doi: 10.1002/1099-1166(200101)16:1<106::AID-GPS288>3.0.CO;2-9 CrossRefPubMedGoogle Scholar
  17. Haller J (2014) Normal and abnormal aggressions: definitions and operational approaches. In: Haller J (ed) Neurobiological bases of abnormal aggression and violent behaviour. Springer Vienna, Vienna, pp 1–31CrossRefGoogle Scholar
  18. Hill AP, Zuckerman KE, Hagen AD et al (2014) Aggressive behavior problems in children with autism spectrum disorders: prevalence and correlates in a large clinical sample. Res Autism Spectr Disord 8:1121–1133. doi: 10.1016/j.rasd.2014.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hoaken PNS, Shaughnessy VK, Pihl RO (2003) Executive cognitive functioning and aggression: is it an issue of impulsivity? Aggress Behav 29:15–30. doi: 10.1002/ab.10023 CrossRefGoogle Scholar
  20. Hoddes E, Zarcone V, Smythe H et al (1973) Quantification of sleepiness: a new approach. Psychophysiology 10:431–436. doi: 10.1111/j.1469-8986.1973.tb00801.x CrossRefPubMedGoogle Scholar
  21. Jasnow AM, Huhman KL, Bartness TJ, Demas GE (2000) Short-day increases in aggression are inversely related to circulating testosterone concentrations in male Siberian hamsters (Phodopus sungorus). Horm Behav 38:102–110. doi: 10.1006/hbeh.2000.1604 CrossRefPubMedGoogle Scholar
  22. Jasnow AM, Huhman KL, Bartness TJ, Demas GE (2002) Short days and exogenous melatonin increase aggression of male Syrian hamsters (Mesocricetus auratus). Horm Behav 42:13–20. doi: 10.1006/hbeh.2002.1797 CrossRefPubMedGoogle Scholar
  23. Kokko K, Pulkkinen L (2000) Aggression in childhood and long-term unemployment in adulthood: a cycle of maladaptation and some protective factors. Dev Psychol 36:463–472. doi: 10.1037/0012-1649.36.4.463 CrossRefPubMedGoogle Scholar
  24. Koolhaas JM, Coppens CM, de Boer SF et al (2013) The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J Vis Exp 77:e4367. doi: 10.3791/4367 Google Scholar
  25. Kouchaki M, Smith IH (2014) The morning morality effect: the influence of time of day on unethical behavior. Psychol Sci 25:95–102. doi: 10.1177/0956797613498099 CrossRefPubMedGoogle Scholar
  26. Krämer UM, Jansma H, Tempelmann C, Münte TF (2007) Tit-for-tat: the neural basis of reactive aggression. NeuroImage 38:203–211. doi: 10.1016/j.neuroimage.2007.07.029 CrossRefPubMedGoogle Scholar
  27. Kravitz EA, Huber R (2003) Aggression in invertebrates. Curr Opin Neurobiol 13:736–743. doi: 10.1016/j.conb.2003.10.003 CrossRefPubMedGoogle Scholar
  28. Lieberman HR, Waldhauser F, Garfield G et al (1984) Effects of melatonin on human mood and performance. Brain Res 323:201–207CrossRefPubMedGoogle Scholar
  29. Lotze M, Veit R, Anders S, Birbaumer N (2007) Evidence for a different role of the ventral and dorsal medial prefrontal cortex for social reactive aggression: an interactive fMRI study. NeuroImage 34:470–478. doi: 10.1016/j.neuroimage.2006.09.028 CrossRefPubMedGoogle Scholar
  30. Lynch HJ, Wurtman RJ, Moskowitz MA et al (1975) Daily rhythm in human urinary melatonin. Science 187:169–171CrossRefPubMedGoogle Scholar
  31. MacLeod CM (1991) Half a century of research on the Stroop effect: an integrative review. Psychol bull 109:163–203. Doi: Doi  10.1037//0033-2909.109.2.163
  32. Morgan AB, Lilienfeld SO (2000) A meta-analytic review of the relation between antisocial behavior and neuropsychological measures of executive function. Clin Psychol Rev 20:113–136. doi: 10.1016/S0272-7358(98)00096-8 CrossRefPubMedGoogle Scholar
  33. O’Brien LM, Lucas NH, Felt BT et al (2011) Aggressive behavior, bullying, snoring, and sleepiness in schoolchildren. Sleep Med 12:652–658. doi: 10.1016/j.sleep.2010.11.012 CrossRefPubMedPubMedCentralGoogle Scholar
  34. O’Neill B, Gardani M, Findlay G et al (2014) Challenging behaviour and sleep cycle disorder following brain injury: a preliminary response to agomelatine treatment. Brain Inj 28:378–381. doi: 10.3109/02699052.2013.865264 CrossRefPubMedGoogle Scholar
  35. Paradee CV, Rapport LJ, Lumley MA et al (2008) Circadian preference and facial emotion recognition among rehabilitation inpatients. Rehabil Psychol 53:46–53. doi: 10.1037/0090-5550.53.1.46 CrossRefGoogle Scholar
  36. Preacher KJ, Hayes AF (2008) Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods 40:879–891. doi: 10.3758/BRM.40.3.879 CrossRefPubMedGoogle Scholar
  37. Ritter D, Eslea M (2005) Hot sauce, toy guns, and graffiti: a critical account of current laboratory aggression paradigms. Aggress Behav 31:407–419. doi: 10.1002/ab.20066 CrossRefGoogle Scholar
  38. Rogers NL, Phan O, Kennaway DJ, Dawson D (1998) Effect of daytime oral melatonin administration on neurobehavioral performance in humans. J Pineal Res 25:47–53. doi: 10.1177/002200278102500401 CrossRefPubMedGoogle Scholar
  39. Slotten HA, Krekling S (1996) Does melatonin have an effect on cognitive performance? Psychoneuroendocrinology 21:673–680. doi: 10.1016/S0306-4530(96)00027-3 CrossRefPubMedGoogle Scholar
  40. Soma KK, Scotti M-AL, Newman AEM et al (2008) Novel mechanisms for neuroendocrine regulation of aggression. Front Neuroendocrinol 29:476–489. doi: 10.1016/j.yfrne.2007.12.003 CrossRefPubMedGoogle Scholar
  41. Taylor SP (1967) Aggressive behavior and physiological arousal as a function of provocation and the tendency to inhibit aggression. J Pers 35:297–310. doi: 10.1111/j.1467-6494.1967.tb01430.x CrossRefPubMedGoogle Scholar
  42. Uz T, Arslan AD, Kurtuncu M et al (2005) The regional and cellular expression profile of the melatonin receptor MT1 in the central dopaminergic system. Mol Brain Res 136:45–53. doi: 10.1016/j.molbrainres.2005.01.002 CrossRefPubMedGoogle Scholar
  43. Wang D, Zhang J, Zhang Z (2012) Effect of testosterone and melatonin on social dominance and agonistic behavior in male Tscheskia triton. Behav Process 89:271–277. doi: 10.1016/j.beproc.2011.12.010 CrossRefGoogle Scholar
  44. Wilkowski BM, Robinson MD (2008) The cognitive basis of trait anger and reactive aggression: an integrative analysis. Personal Soc Psychol Rev 12:3–21. doi: 10.1177/1088868307309874 CrossRefGoogle Scholar
  45. Zadra JR, Proffitt DR (2014) Implicit associations have a circadian rhythm. PLoS One 9:e110149. doi: 10.1371/journal.pone.0110149 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Shenzhen Key Laboratory of Affective and Social Cognitive ScienceShenzhen UniversityShenzhenChina
  2. 2.Research Centre of Brain Function and Psychological ScienceShenzhen UniversityShenzhenChina
  3. 3.School of Psychological and Cognitive SciencesPeking UniversityBeijingChina
  4. 4.Neuropsychopharmacology and Biopsychology Unit, Department of Basic Psychological Research and Research Methods, Faculty of PsychologyUniversity of ViennaViennaAustria
  5. 5.Beijing Key Laboratory of Behavior and Mental HealthPeking UniversityBeijingChina
  6. 6.PKU-IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina

Personalised recommendations