Advertisement

Psychopharmacology

, Volume 234, Issue 15, pp 2311–2323 | Cite as

Caffeine increases the velocity of rapid eye movements in unfatigued humans

  • Charlotte J. W. Connell
  • Benjamin Thompson
  • Jason Turuwhenua
  • Robert F. Hess
  • Nicholas GantEmail author
Original Investigation

Abstract

Background

Caffeine is a widely used dietary stimulant that can reverse the effects of fatigue on cognitive, motor and oculomotor function. However, few studies have examined the effect of caffeine on the oculomotor system when homeostasis has not been disrupted by physical fatigue. This study examined the influence of a moderate dose of caffeine on oculomotor control and visual perception in participants who were not fatigued.

Methods

Within a placebo-controlled crossover design, 13 healthy adults ingested caffeine (5 mg·kg−1 body mass) and were tested over 3 h. Eye movements, including saccades, smooth pursuit and optokinetic nystagmus, were measured using infrared oculography.

Results

Caffeine was associated with higher peak saccade velocities (472 ± 60° s−1) compared to placebo (455 ± 62° s−1). Quick phases of optokinetic nystagmus were also significantly faster with caffeine, whereas pursuit eye movements were unchanged. Non-oculomotor perceptual tasks (global motion and global orientation processing) were unaffected by caffeine.

Conclusions

These results show that oculomotor control is modulated by a moderate dose of caffeine in unfatigued humans. These effects are detectable in the kinematics of rapid eye movements, whereas pursuit eye movements and visual perception are unaffected. Oculomotor functions may be sensitive to changes in central catecholamines mediated via caffeine’s action as an adenosine antagonist, even when participants are not fatigued.

Keywords

Oculomotor control Eye movements Caffeine Saccades Smooth pursuit Optokinetic nystagmus Visual perception 

Notes

Acknowledgements

We thank the participants who volunteered their time to take part in the study. We are grateful to Hayden Green for his assistance in data collection.

Author contributions

Conceptualization: C.J.W.C., B.T. and N.G.; methodology: C.J.W.C., B.T. and N.G.; software: C.J.W.C., J.T. and R.H.; formal analysis: C.J.W.C.; investigation: C.J.W.C.; resources: N.G.; writing—original draft: C.J.W.C.; writing—review and editing: C.J.W.C., N.G. and B.T.; supervision: N.G.

Compliance with ethical standards

Competing interests

The authors have no competing financial interests to declare.

References

  1. Addicott MA, Yang LL, Peiffer AM, Laurienti PJ (2009) Methodological considerations for the quantification of self-reported caffeine use. Psychopharmacology 203(3):571–578. doi: 10.1007/s00213-008-1403-5 CrossRefPubMedGoogle Scholar
  2. Allman A-A, Ettinger U, Joober R, O’Driscoll GA (2012) Effects of methylphenidate on basic and higher-order oculomotor functions. J Psychopharmacol 26(11):1471–1479CrossRefPubMedGoogle Scholar
  3. Amador N, Schlag-Rey M, Schlag J (1998) Primate antisaccades. I. Behavioral characteristics. J Neurophysiol 80(4):1775–1786PubMedGoogle Scholar
  4. Bahill AT, Clark MR, Stark L (1975) The main sequence, a tool for studying human eye movements. Math Biosci 24(3):191–204CrossRefGoogle Scholar
  5. Bell AH, Everling S, Munoz DP (2000) Influence of stimulus eccentricity and direction on characteristics of pro- and antisaccades in non-human primates. J Neurophysiol 84(5):2595–2604PubMedGoogle Scholar
  6. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125(1–2):279–284CrossRefPubMedGoogle Scholar
  7. Busettini C, Frölich MA (2014) Effects of mild to moderate sedation on saccadic eye movements. Behav Brain Res 272:286–302. doi: 10.1016/j.bbr.2014.07.012 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Clavagnier S, Polito V, Hess R (2016) How independent are global form and global motion processings? J Vis 16(12):185–185. doi: 10.1167/16.12.185 CrossRefGoogle Scholar
  9. Cohen B (1972) Origin of quick phases of nystagmus. Prog Brain Res 37:544–545CrossRefPubMedGoogle Scholar
  10. Connell CJW, Thompson B, Kuhn G, Claffey MP, Duncan S, Gant N (2016a) Fatigue related impairments in oculomotor control are prevented by caffeine. Scientific Reports 6:26614CrossRefPubMedPubMedCentralGoogle Scholar
  11. Connell CJW, Thompson B, Kuhn G, Gant N (2016b) Exercise-induced fatigue and caffeine supplementation affect psychomotor performance but not covert visuo-spatial attention. PLoS One 11(10):e0165318CrossRefPubMedPubMedCentralGoogle Scholar
  12. Connell CJW, Thompson B, Turuwhenua J, Srzich A, Gant N (2017) Fatigue-related impairments in oculomotor control are prevented by norepinephrine-dopamine reuptake inhibition. Scientific Reports 7:42726CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cordery, P., Peirce, N., Maughan, R. J., & Watson, P. (2016). Dopamine/noradrenaline reuptake inhibition in women improves endurance exercise performance in the heat. Scandinavian Journal of Medicine and Science in Sports.Google Scholar
  14. Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA (2003) Central nervous system effects of caffeine and adenosine on fatigue. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 284(2):R399–R404PubMedGoogle Scholar
  15. Einöther ST (2013) Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology 225(2):251–274. doi: 10.1007/s00213-012-2917-4 CrossRefPubMedGoogle Scholar
  16. Ettinger U, Kumari V, Crawford TJ, Davis RE, Sharma T, Corr PJ (2003) Reliability of smooth pursuit, fixation, and saccadic eye movements. Psychophysiology 40(4):620–628CrossRefPubMedGoogle Scholar
  17. Ferre S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105(4):1067–1079CrossRefPubMedGoogle Scholar
  18. Fischer B, Gezeck S, Hartnegg K (1997) The analysis of saccadic eye movements from gap and overlap paradigms. Brain Res Protocol 2(1):47–52CrossRefGoogle Scholar
  19. Fisone G, Borgkvist A, Usiello A (2004) Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci 61(7–8):857–872CrossRefPubMedGoogle Scholar
  20. Fredholm B, Bättig K, Holmén J, Nehlig A, Zvartau E (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51(1):83–133PubMedGoogle Scholar
  21. Galley N (1989) Saccadic eye movement velocity as an indicator of (de) activation. A review and some speculations. J Psychophysiol 3(3):229–244Google Scholar
  22. Garbutt S, Harwood M, Harris C (2001) Comparison of the main sequence of reflexive saccades and the quick phases of optokinetic nystagmus. Br J Ophthalmol 85(12):1477–1483CrossRefPubMedPubMedCentralGoogle Scholar
  23. Goodale MA (2011) Transforming vision into action. Vis Res 51(13):1567–1587CrossRefPubMedGoogle Scholar
  24. Goodale MA, Milner D (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25CrossRefPubMedGoogle Scholar
  25. Hallett PE (1978) Primary and secondary saccades to goals defined by instructions. Vis Res 18(10):1279–1296. doi: 10.1016/0042-6989(78)90218-3 CrossRefPubMedGoogle Scholar
  26. Hasegawa H, Piacentini MF, Sarre S, Michotte Y, Ishiwata T, Meeusen R (2008) Influence of brain catecholamines on the development of fatigue in exercising rats in the heat. J Physiol 586(1):141–149CrossRefPubMedGoogle Scholar
  27. Hogervorst E, Bandelow S, Schmitt J, Jentjens R, Oliveira M, Allgrove J et al (2008) Caffeine improves physical and cognitive performance during exhaustive exercise. Med Sci Sports Exerc 40(10):1841–1851. doi: 10.1249/MSS.0b013e31817bb8b7 CrossRefPubMedGoogle Scholar
  28. Hutton SB (2008) Cognitive control of saccadic eye movements. Brain Cogn 68(3):327–340CrossRefPubMedGoogle Scholar
  29. Hutton SB, Crawford TJ, Puri BK, Duncan LJ, Chapman M, Kennard C et al (1998) Smooth pursuit and saccadic abnormalities in first-episode schizophrenia. Psychol Med 28(3):685–692CrossRefPubMedGoogle Scholar
  30. Jin Z, Reeves A (2009) Attentional release in the saccadic gap effect. Vis Res 49(16):2045–2055. doi: 10.1016/j.visres.2009.02.015 CrossRefPubMedGoogle Scholar
  31. Kapoula Z, Yang Q, Vernet M, Bonfils P, Londero A (2010) Eye movement abnormalities in somatic tinnitus: fixation, smooth pursuit and optokinetic nystagmus. Auris Nasus Larynx 37(3):314–321. doi: 10.1016/j.anl.2009.10.004 CrossRefPubMedGoogle Scholar
  32. Keller E (1974) Participation of medial pontine reticular formation in eye movement generation in monkey. J Neurophysiol 37(2):316–332PubMedGoogle Scholar
  33. Konen CS, Kleiser R, Seitz RJ, Bremmer F (2005) An fMRI study of optokinetic nystagmus and smooth-pursuit eye movements in humans. Exp Brain Res 165(2):203–216. doi: 10.1007/s00221-005-2289-7 CrossRefPubMedGoogle Scholar
  34. Kovacs EM, Stegen J, Brouns F (1998) Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol 85(2):709–715PubMedGoogle Scholar
  35. Leigh RJ, Zee DS (2006) The neurology of eye movements. Oxford University Press, OxfordGoogle Scholar
  36. Lencer R, Trillenberg P (2008) Neurophysiology and neuroanatomy of smooth pursuit in humans. Brain Cogn 68(3):219–228CrossRefPubMedGoogle Scholar
  37. Lopes JM, Aubier M, Jardim J, Aranda JV, Macklem PT (1983) Effect of caffeine on skeletal muscle function before and after fatigue. J Appl Physiol 54(5):1303–1305PubMedGoogle Scholar
  38. Magkos F, Kavouras SA (2005) Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr 45(7–8):535–562CrossRefPubMedGoogle Scholar
  39. McDowell JE, Dyckman KA, Austin BP, Clementz BA (2008) Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn 68(3):255–270CrossRefPubMedPubMedCentralGoogle Scholar
  40. Meeusen R, Sarre S, De Meirleir K, Ebinger G, Michotte Y (2003) The effects of running speed and running duration on extracellular dopamine levels in rat striatum, measured with microdialysis. Medicina Sportiva 7(1):E29–E36Google Scholar
  41. Nehlig A, Daval JL, Debry G (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Rev 17(2):139–170CrossRefPubMedGoogle Scholar
  42. Olk B, Kingstone A (2003) Why are antisaccades slower than prosaccades? A novel finding using a new paradigm. Neuroreport 14(1):151–155CrossRefPubMedGoogle Scholar
  43. Prins, N., & Kingdom, F. A. A. (2009). Palamedes: Matlab routines for analyzing psychophysical data. Retrieved from http://www.palamedestoolbox.org
  44. Roelands B, Watson P, Cordery P, Decoster S, Debaste E, Maughan R, Meeusen R (2012) A dopamine/noradrenaline reuptake inhibitor improves performance in the heat, but only at the maximum therapeutic dose. Scand J Med Sci Sports 22(5):e93–e98CrossRefPubMedGoogle Scholar
  45. Rowland LM, Thomas ML, Thorne DR, Sing HC, Krichmar JL, Davis HQ et al (2005) Oculomotor responses during partial and total sleep deprivation. Aviat Space Environ Med 76(7):C104–C113PubMedGoogle Scholar
  46. Roy-Byrne P, Radant A, Wingerson D, Cowley DS (1995) Human oculomotor function: reliability and diurnal variation. Biol Psychiatry 38(2):92–97CrossRefPubMedGoogle Scholar
  47. Smit AC, Van Gisbergen JAM, Cools AR (1987) A parametric analysis of human saccades in different experimental paradigms. Vis Res 27(10):1745–1762CrossRefPubMedGoogle Scholar
  48. Smith A, Brice C, Nash J, Rich N, Nutt DJ (2003) Caffeine and central noradrenaline: effects on mood, cognitive performance, eye movements and cardiovascular function. J Psychopharmacol 17(3):283–292CrossRefPubMedGoogle Scholar
  49. Sokmen B, Armstrong LE, Kraemer WJ, Casa DJ, Dias JC, Judelson DA, Maresh CM (2008) Caffeine use in sports: considerations for the athlete. Journal of Strength and Conditioning Research 22(3):978–986CrossRefPubMedGoogle Scholar
  50. Taylor, J. L., Amann, M., Duchateau, J., Meeusen, R., & Rice, C. L. (2016). Neural contributions to muscle fatigue: from the brain to the muscle and back again. Medicine and Science in Sports and Exercise.Google Scholar
  51. Ungerleider LG, Haxby JV (1994) ‘What’and ‘where’ in the human brain. Curr Opin Neurobiol 4(2):157–165CrossRefPubMedGoogle Scholar
  52. Wang C, Tian J, Liang P, Sun F (2005) Diazepam-induced changes of optokinetic nystagmus fast phase. Exp Brain Res 167(3):446–450. doi: 10.1007/s00221-005-0176-x CrossRefPubMedGoogle Scholar
  53. Zils E, Sprenger A, Heide W, Born J, Gais S (2005) Differential effects of sleep deprivation on saccadic eye movements. Sleep 28(9):1109CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Charlotte J. W. Connell
    • 1
    • 5
  • Benjamin Thompson
    • 2
    • 3
  • Jason Turuwhenua
    • 2
  • Robert F. Hess
    • 4
  • Nicholas Gant
    • 1
    • 5
    Email author
  1. 1.Department of Exercise SciencesUniversity of AucklandAucklandNew Zealand
  2. 2.Department of Optometry and Vision ScienceUniversity of AucklandAucklandNew Zealand
  3. 3.School of Optometry and Vision ScienceUniversity of WaterlooWaterlooCanada
  4. 4.McGill Vision Research, Department of OphthalmologyMcGill UniversityMontrealCanada
  5. 5.Exercise Neurometabolism Laboratory, Centre for Brain ResearchThe University of AucklandAucklandNew Zealand

Personalised recommendations