, Volume 234, Issue 14, pp 2127–2137 | Cite as

Targeting the subthalamic nucleus in a preclinical model of alcohol use disorder

  • Yann PellouxEmail author
  • Christelle Baunez
Original Investigation



The subthalamic nucleus (STN) has only recently been considered to have a role in reward processing. In rats, inactivation of the STN by lesion or high-frequency stimulation (HFS) decreases motivation for cocaine but increases motivation for sucrose. For ethanol, the effect of STN lesion depends on the individual’s baseline intake; decreasing motivation for ethanol in rats with lower ethanol intake, while increasing motivation for ethanol in rats with higher—but still limited—ethanol intake. However, the involvement of the STN in behaviour more closely resembling some aspects of alcohol use disorder has not been assessed. This study aimed to determine the effect of STN lesions on the escalation of ethanol intake, subsequent increases in the motivation to “work” for ethanol and the choice of ethanol over a non-drug alternative.


We found that STN lesion prevented increases in ethanol intake observed during intermittent ethanol access and after a long period of ethanol privation. STN lesion also decreased the motivation to work for ethanol after escalated intake. Surprisingly, STN lesion increased the choice of alcohol over saccharin. This was associated with a blunting of the hedonic responses to the taste of the reinforcement alternatives.


These results evidence the involvement of the STN in different ethanol-motivated behaviours and therefore position the STN as an interesting target for the treatment of alcohol use disorders.


Basal ganglia Emotion Ethanol Motivation Choice 



This study has been supported by Centre National de la Recherche Scientifique, Aix-Marseille Université, Institut de Recherche et d’Etude sur les Boissons, Agence Nationale de la Recherche (Grant ANR-09-MNPS-028-01), ANR Grant 2010-NEUR-005-01 in the framework of the ERA-Net NEURON), Fondation pour la Recherche Medicale (DPA20140629789). CB and YP declare having no competing financial interests.

The authors would like to thank Brendan Tunstall for his helpful comments on the manuscript.


  1. Ahmed SH (2010) Validation crisis in animal models of drug addiction: beyond non-disordered drug use toward drug addiction. Neurosci Biobehav Rev 35(2):172–184CrossRefPubMedGoogle Scholar
  2. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, WashingtonGoogle Scholar
  3. Barichella M, Marczewska AM, Mariani C, Landi A, Vairo A, Pezzoli G (2003) Body weight gain rate in patients with Parkinson's disease and deep brain stimulation. Mov Disord 18:1337–1340CrossRefPubMedGoogle Scholar
  4. Baunez C, Robbins TW (1997) Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in rats. Eur J Neurosci 9(10):2086–2099CrossRefPubMedGoogle Scholar
  5. Baunez C, Dias C, Cador M, Amalric M (2005) The subthalamic nucleus exerts opposite control on cocaine and natural rewards. Nat Neurosci 8:484–489PubMedGoogle Scholar
  6. Bell RL, Rodd ZA, Lumeng L, Murphy JM, McBride WJ (2006) The alcohol-preferring P rat and animal models of excessive alcohol drinking. Addict Biol 11:270–288CrossRefPubMedGoogle Scholar
  7. Berendse HW, Groenewegen HJ (1991) The connections of the medial part of the subthalamic nucleus in the rat: evidence for a parallel organization. In: Bernardi G, Carpenter MB, Di Chiara G, Morelli M, Stanzione P (eds) The basal ganglia III. Plenum, New York, pp 89–98CrossRefGoogle Scholar
  8. Berridge KC (2000) Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci Biobehav Rev 24:173–198CrossRefPubMedGoogle Scholar
  9. Cardinal RN, Everitt BJ (2004) Neural and psychological mechanisms underlying appetitive learning: links to drug addiction. Curr Opin Neurobiol 14:156–162CrossRefPubMedGoogle Scholar
  10. Carnicella S, Ron D, Barak S (2014) Intermittent ethanol access schedule in rats as a preclinical model of alcohol abuse. Alcohol 48:243–252CrossRefPubMedPubMedCentralGoogle Scholar
  11. Contreras M, Ceric F, Torrealba F (2007) Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science 318:655–658CrossRefPubMedGoogle Scholar
  12. Damasio A.R., 2000. The feeling of what happens: body and emotion in the making of consciousness. Harcourt; New York.Google Scholar
  13. Eusebio A, Witjas T, Cohen J et al (2013) Subthalamic nucleus stimulation and compulsive use of dopaminergic medication in Parkinson’s disease. J Neurol Neurosurg Psychiatry 84:868–874CrossRefPubMedGoogle Scholar
  14. Gentil M, Garcia-Ruiz P, Pollak P, Benabid AL (2000) Effect of bilateral deep-brain stimulation on oral control of patients with parkinsonism. Eur Neurol 44(3):147–152CrossRefPubMedGoogle Scholar
  15. Guercio LA, Schmidt HD, Pierce RC (2014) Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats. Behav Brain Res 281:125–130CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hopf FW, Chang SJ, Sparta DR, Bowers MS, Bonci A (2010) Motivation for alcohol becomes resistant to quinine adulteration after 3 to 4 months of intermittent alcohol self-administration. Alcohol Clin Exp Res 34(9):1565–1573CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kiefer SW, Dopp JM (1989) Taste reactivity to alcohol in rats. Behav Neurosci 103(6):1318–1326CrossRefPubMedGoogle Scholar
  18. Koob GF, Ahmed SH, Boutrel B, Chen SA, Kenny PJ, Markou A, O'Dell LE, Parsons LH, Sanna PP (2004) Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev 27:739–749CrossRefPubMedGoogle Scholar
  19. Lardeux S, Baunez C (2008) Alcohol preference influences the subthalamic nucleus control on motivation for alcohol in rats. Neuropsychopharmacology 33:634–642CrossRefPubMedGoogle Scholar
  20. Lenoir M, Serre F, Cantin L, Ahmed SH (2007) Intense sweetness surpasses cocaine reward. PLoS One 2(8):e698CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lenoir M, Cantin L, Vanhille N, Serre F, Ahmed SH (2013) Extended heroin access increases heroin choices over a potent nondrug alternative. Neuropsychopharmacology 38:1209–1220CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lévêque M, Carron R, Régis JM (2013) Radiosurgery for the treatment of psychiatric disorders: a review. World Neurosurg 80(3–4):S32.e1–S32.e9Google Scholar
  23. Lhommee E, Klinger H, Thobois S et al (2012) Subthalamic stimulation in Parkinson’s disease: restoring the balance of motivated behaviours. Brain 135:1463–1477CrossRefPubMedGoogle Scholar
  24. Li N, Wang J, Wang XL, Chang CW, Ge SN, Gao L, Wu HM, Zhao HK, Geng N, Gao GD (2012) Nucleus accumbens surgery for addiction. World Neurosurg 80(3–4):S28.e9–S28.19Google Scholar
  25. Limousin P, Pollak P, Benazzouz A et al (1995) Effect of Parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345:91–95CrossRefPubMedGoogle Scholar
  26. Mallet L, Mesnage V, Houeto JL et al (2002) Compulsions, Parkinson's disease, and stimulation. Lancet 360:1302–1304CrossRefPubMedGoogle Scholar
  27. Mallet L, Polosan M, Jaafari N et al (2008) Subthalamic nucleus stimulation in severe obsessive–compulsive disorder. N Engl J Med 359:2121–2134CrossRefPubMedGoogle Scholar
  28. McCracken CB, Grace AA (2007) High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo. J Neurosci 27:12601–12610CrossRefPubMedGoogle Scholar
  29. Mehta A, Menalled L, Chesselet MF (2005) Behavioral responses to injections of muscimol into the subthalamic nucleus: temporal changes after nigrostriatal lesions. Neuroscience 131(3):769–778CrossRefPubMedGoogle Scholar
  30. Morrison SE, Bamkole MA, Nicola SM (2015) Sign tracking, but not goal tracking, is resistant to outcome devaluation. Front Neurosci 9:468CrossRefPubMedPubMedCentralGoogle Scholar
  31. Müller UJ, Sturm V, Voges J et al (2009) Successful treatment of chronic resistant alcoholism by deep brain stimulation of nucleus accumbens: first experience with three cases. Pharmacopsychiatry 42:288–291CrossRefPubMedGoogle Scholar
  32. Naqvi NH, Rudrauf D, Damasio H, Bechara A (2007) Damage to the insula disrupts addiction to cigarette smoking. Science 315:531–534CrossRefPubMedPubMedCentralGoogle Scholar
  33. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Academic, San DiegoGoogle Scholar
  34. Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, 7th edn. Academic Press, CambridgeGoogle Scholar
  35. Pelloux Y, Baunez C (2013) Deep brain stimulation for addiction: why the subthalamic nucleus should be favoured. Curr Opin Neurobiol 23:713–720CrossRefPubMedGoogle Scholar
  36. Pelloux Y, Meffre J, Giorla E, Baunez C (2014) The subthalamic nucleus keeps you high on emotion: behavioral consequences of its inactivation. Front Behav Neurosci 5(8):414Google Scholar
  37. Péron J, Frühholz S, Vérin M, Grandjean D (2013) Subthalamic nucleus: a key structure for emotional component synchronization in humans. Neurosci Biobehav Rev 37:358–373CrossRefPubMedGoogle Scholar
  38. Richter CP (1940) Alcohol as food. Quarterly Journal of Studies on Alcoholism 1:650–661Google Scholar
  39. Roitman MF, Wheeler RA, Wightman RM, Carelli RM (2008) Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli. Nat Neurosci 11:1376–1377CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rouaud T, Lardeux S, Panayotis N et al (2010) Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc Natl Acad Sci 107:1196–1200CrossRefPubMedGoogle Scholar
  41. Simms JA, Steensland P, Medina B et al (2008) Intermittent access to 20% ethanol induces high ethanol consumption in Long-Evans and Wistar rats. Alcohol Clin Exp Res 32:1816–1823CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sinclair JD, Senter RJ (1968) Development of an alcohol-deprivation effect in rats. Q J Stud Alcohol 29:863–867PubMedGoogle Scholar
  43. Spoelder M, Hesseling P1, Baars AM, Lozeman-van't Klooster JG, Rotte MD, Vanderschuren LJ, Lesscher HM (2015) Individual variation in alcohol intake predicts reinforcement, motivation, and compulsive alcohol use in rats. Alcohol Clin Exp Res 39(12):2427–2437CrossRefPubMedGoogle Scholar
  44. Tunstall BJ, Carmack SA, Koob GF, Vendruscolo LF (2017) Dysregulation of brain stress systems mediates compulsive alcohol drinking. Current Opinion in Behavioral Sciences 13:85–90CrossRefPubMedGoogle Scholar
  45. Van der Plasse G, Schrama R, van Seters SP et al (2012) Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat. PLoS One 7:e33455CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wade CL, Kallupi M, Hernandez DO, Breysse E, de Guglielmo G, Crawford E, Koob GF, Schweitzer P, Baunez C, George O (2017) High-frequency stimulation of the subthalamic nucleus blocks compulsive-like re-escalation of heroin taking in rats. Neuropsychopharmacology. doi: 10.1038/npp.2016.270
  47. Wise RA (1973) Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacologia 29:203–210CrossRefPubMedGoogle Scholar
  48. Witjas T, Baunez C, Henry JM et al (2005) Addiction in Parkinson’s disease: impact of subthalamic nucleus deep brain stimulation. Mov Disord 20:1052–1055CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut de Neurosciences de la TimoneUMR7289, CNRS & Aix-Marseille UniversitéMarseilleFrance
  2. 2.National Institute on Drug Abuse Intramural Research ProgramBaltimoreUSA

Personalised recommendations