Psychopharmacology

, Volume 234, Issue 13, pp 2031–2046 | Cite as

Dreamlike effects of LSD on waking imagery in humans depend on serotonin 2A receptor activation

  • Rainer Kraehenmann
  • Dan Pokorny
  • Leonie Vollenweider
  • Katrin H. Preller
  • Thomas Pokorny
  • Erich Seifritz
  • Franz X. Vollenweider
Original Investigation

Abstract

Rationale

Accumulating evidence indicates that the mixed serotonin and dopamine receptor agonist lysergic acid diethylamide (LSD) induces an altered state of consciousness that resembles dreaming.

Objectives

This study aimed to test the hypotheses that LSD produces dreamlike waking imagery and that this imagery depends on 5-HT2A receptor activation and is related to subjective drug effects.

Methods

Twenty-five healthy subjects performed an audiorecorded guided mental imagery task 7 h after drug administration during three drug conditions: placebo, LSD (100 mcg orally) and LSD together with the 5-HT2A receptor antagonist ketanserin (40 mg orally). Cognitive bizarreness of guided mental imagery reports was quantified as a standardised formal measure of dream mentation. State of consciousness was evaluated using the Altered State of Consciousness (5D-ASC) questionnaire.

Results

LSD, compared with placebo, significantly increased cognitive bizarreness (p < 0.001). The LSD-induced increase in cognitive bizarreness was positively correlated with the LSD-induced loss of self-boundaries and cognitive control (p < 0.05). Both LSD-induced increases in cognitive bizarreness and changes in state of consciousness were fully blocked by ketanserin.

Conclusions

LSD produced mental imagery similar to dreaming, primarily via activation of the 5-HT2A receptor and in relation to loss of self-boundaries and cognitive control. Future psychopharmacological studies should assess the differential contribution of the D2/D1 and 5-HT1A receptors to cognitive bizarreness.

Keywords

LSD Ketanserin 5-HT2A receptor Guided mental imagery Dreams Cognitive bizarreness Healthy subjects Self-boundaries and cognitive control Visual hallucinations 

Notes

Acknowledgements

This study was financially supported by grants from the Heffter Research Institute (1-190413), the Swiss Neuromatrix Foundation (2015-0103), the Usona Institute (2015-2056) and the Swiss National Science Foundation (SNSF, P2ZHP1_161626).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Abramson HA, Jarvik ME, Kaufman MR, Kornetsky C, Levine A, Wagner M (1955) Lysergic acid diethylamide (LSD-25): I. Physiological and perceptual responses. The Journal of Psychology 39(1):3–60. doi:10.1080/00223980.1955.9916156 CrossRefGoogle Scholar
  2. Achermann P, Rusterholz T, Dürr R, König T, Tarokh L (2016) Global field synchronization reveals rapid eye movement sleep as most synchronized brain state in the human EEG. Royal Society Open Science 3(10):160201. doi:10.1098/rsos.160201
  3. Amargós-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, Celada P, Mengod G, Artigas F, Toth M (2004) Co-expression and in vivo interaction of serotonin 1A and serotonin 2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 14(3):281–299. doi:10.1093/cercor/bhg128 PubMedCrossRefGoogle Scholar
  4. Araneda R, Andrade R (1991) 5-Hydroxytryptamine 2 and 5-hydroxytryptamine 1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40(2):399–412. doi:10.1016/0306-4522(91)90128-B PubMedCrossRefGoogle Scholar
  5. de Araujo DB, Ribeiro S, Cecchi GA, Carvalho FM, Sanchez TA, Pinto JP, de Martinis BS, Crippa JA, Hallak JEC, Santos AC (2012) Seeing with the eyes shut: neural basis of enhanced imagery following ayahuasca ingestion. Hum Brain Mapp 33(11):2550–2560. doi:10.1002/hbm.21381 PubMedCrossRefGoogle Scholar
  6. Baggott MJ (2015) Psychedelics and creativity: a review of the quantitative literature. PeerJ PrePrints 3:e1202v1. doi:10.7287/peerj.preprints.1202v1
  7. Baggott MJ, Siegrist JD, Galloway GP, Robertson LC, Coyle JR, Mendelson JE (2010) Investigating the mechanisms of hallucinogen-induced visions using 3,4-methylenedioxyamphetamine (MDA): a randomized controlled trial in humans. PLoS One 5(12):e14074. doi:10.1371/journal.pone.0014074 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ballanger B, Strafella AP, van Eimeren T, Zurowski M, Rusjan PM, Houle S, Fox SH (2010) Serotonin 2A receptors and visual hallucinations in Parkinson disease. Arch Neurol 67(4):416–421. doi:10.1001/archneurol.2010.35 PubMedCrossRefGoogle Scholar
  9. Braun A (1997) Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain 120(7):1173–1197. doi:10.1093/brain/120.7.1173 PubMedCrossRefGoogle Scholar
  10. Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC (2002) What geometric visual hallucinations tell us about the visual cortex. Neural Comput 14(3):473–491. doi:10.1162/089976602317250861 PubMedCrossRefGoogle Scholar
  11. Busch AK, Johnson WC (1950) LSD 25 as an aid in psychotherapy; preliminary report of a new drug. Diseases of the nervous system 11(8):241–243PubMedGoogle Scholar
  12. Carhart-Harris R, Nutt D (2014) Was it a vision or a waking dream? Front Psychol 5:255. doi:10.3389/fpsyg.2014.00255 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Carhart-Harris RL, Muthukumaraswamy S, Roseman L, Kaelen M, Droog W, Murphy K, Tagliazucchi E, Schenberg EE, Nest T, Orban C, Leech R, Williams LT, Williams TM, Bolstridge M, Sessa B, McGonigle J, Sereno MI, Nichols D, Hellyer PJ, Hobden P, Evans J, Singh KD, Wise RG, Curran HV, Feilding A, Nutt DJ (2016) Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc Natl Acad Sci U S A 113(17):4853–4858. doi:10.1073/pnas.1518377113 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Carter OL, Burr DC, Pettigrew JD, Wallis GM, Hasler F, Vollenweider FX (2005) Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors. J Cogn Neurosci 17(10):1497–1508. doi:10.1162/089892905774597191 PubMedCrossRefGoogle Scholar
  15. Celada P, Puig MV, Amargós-Bosch M, Adell A, Artigas F (2004) The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci 29(4):252–265PubMedPubMedCentralGoogle Scholar
  16. Chandler AL, Hartman MA (1960) Lysergic acid diethylamide (LSD-25) as a facilitating agent in psychotherapy. Arch Gen Psychiatry 2(3):286–299. doi:10.1001/archpsyc.1960.03590090042008 CrossRefGoogle Scholar
  17. Dammann G, Dürsteler-Macfarland KM, Strasser H, Skipper GE, Wiesbeck GA, Wurst FM (2014) Cannabis use among a sample of 16 to 18 year old students in Switzerland. Psychiatr Danub 26(1):56–65PubMedGoogle Scholar
  18. Dittrich A (1996) Aetiologie-unabhängige Strukturen veränderter Wachbewusstseinszustände: Ergebnisse empirischer Untersuchungen über Halluzinogene I. Und II. Ordnung, sensorische Deprivation, hypnagoge Zustände, hypnotische Verfahren sowie Reizüberflutung. VWB, BerlinGoogle Scholar
  19. Dolder PC, Schmid Y, Haschke M, Rentsch KM, Liechti ME (2015) Pharmacokinetics and concentration-effect relationship of oral LSD in humans. Int J Neuropsychopharmacol 19(1):1–7. doi:10.1093/ijnp/pyv072 Google Scholar
  20. Driver H, Flanigan M, Bentley A, Mitchell D, Luus H, Shapiro C (1995) The influence of ipsapirone, a 5-HT1A agonist, on sleep patterns of healthy subjects. Psychopharmacology 117(2):186–192. doi:10.1007/BF02245186 PubMedCrossRefGoogle Scholar
  21. Ermentrout G, Cowan J (1979) A mathematical theory of visual hallucination patterns. Biol Cybernetics 34(3):137–150. doi:10.1007/BF00336965 CrossRefGoogle Scholar
  22. Ettrup A, Cunha-Bang SD, Mcmahon B, Lehel S, Dyssegaard A, Skibsted AW, Jørgensen LM, Hansen M, Baandrup AO, Bache S, Svarer C, Kristensen JL, Gillings N, Madsen J, Knudsen GM (2014) Serotonin 2A receptor agonist binding in the human brain with [11C] Cimbi-36. J Cereb Blood Flow Metab 34(7):1188–1196. doi:10.1038/jcbfm.2014.68
  23. Family N, Vinson D, Vigliocco G, Kaelen M, Bolstridge M, Nutt DJ, Carhart-Harris RL (2016) Semantic activation in LSD: evidence from picture naming. Language, Cognition and Neuroscience 31(10):1320–1327. doi:10.1080/23273798.2016.1217030 CrossRefGoogle Scholar
  24. Fischer R, Landon GM (1972) On the arousal state-dependent recall of 'subconscious' experience: stateboundness. Br J Psychiatry 120(555):159–172. doi:10.1192/bjp.120.555.159 PubMedCrossRefGoogle Scholar
  25. Fischman LG (1983) Dreams, hallucinogenic drug states, and schizophrenia: a psychological and biological comparison. Schizophr Bull 9(1):73–94. doi:10.1093/schbul/9.1.73 PubMedCrossRefGoogle Scholar
  26. Fosse R, Stickgold R, Hobson JA (2004) Thinking and hallucinating: reciprocal changes in sleep. Psychophysiology 41(2):298–305. doi:10.1111/j.1469-8986.2003.00146.x PubMedCrossRefGoogle Scholar
  27. Franke GH, Derogatis LR (1995) Die Symptom-Checkliste von Derogatis SCL-90-R; deutsche Version; Manual. Beltz-Test-GmbH, GöttingenGoogle Scholar
  28. Frecska E, Móré CE, Vargha A, Luna LE (2012) Enhancement of creative expression and entoptic phenomena as after-effects of repeated ayahuasca ceremonies. J Psychoactive Drugs 44(3):191–199. doi:10.1080/02791072.2012.703099 PubMedCrossRefGoogle Scholar
  29. Frederking W (1955) Intoxicant drugs (mescaline and lysergic acid diethylamide) in psychotherapy. J Nerv Ment Dis 121(3):262–266PubMedCrossRefGoogle Scholar
  30. Giacomelli S, Palmery M, Romanelli L, Cheng C, Silvestrini B (1998) Lysergic acid diethylamide (LSD) is a partial agonist of D2 dopaminergic receptors and it potentiates dopamine-mediated prolactin secretion in lactotrophs in vitro. Life Sci 63(3):215–222. doi:10.1016/S0024-3205(98)00262-8
  31. Gillin J, Jernajczyk W, Valladares-Neto D, Golshan S, Lardon M, Stahl S (1994) Inhibition of REM sleep by ipsapirone, a 5HT1A agonist, in normal volunteers. Psychopharmacology 116(4):433–436. doi:10.1007/BF02247474 PubMedCrossRefGoogle Scholar
  32. Glicksohn J (1992) An exploratory study of syncretic experience: eidetics, synaesthesia and absorption. Perception 21(5):637–642. doi:10.1068/p210637 PubMedCrossRefGoogle Scholar
  33. González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452. doi:10.1016/j.neuron.2007.01.008 PubMedCrossRefGoogle Scholar
  34. Gottesmann C (2006) The dreaming sleep stage: a new neurobiological model of schizophrenia? Neuroscience 140(4):1105–1115. doi:10.1016/j.neuroscience.2006.02.082 PubMedCrossRefGoogle Scholar
  35. Green WJ (1969) LSD and the sleep-dream cycle. Experimental medicine and surgery 27(1–2):138–144PubMedGoogle Scholar
  36. de Gregorio D, Posa L, Ochoa-Sanchez R, Mclaughlin R, Maione S, Comai S, Gobbi G (2016) The hallucinogen d-lysergic diethylamide (LSD) decreases dopamine firing activity through 5-HT1A, D2 and TAAR1 receptors. Pharmacol Res 113:81–91. doi:10.1016/j.phrs.2016.08.022 PubMedCrossRefGoogle Scholar
  37. Guilford JP (1967) The nature of human intelligence. McGraw-Hill, New YorkGoogle Scholar
  38. Halberstadt AL (2015) Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav Brain Res 277:99–120. doi:10.1016/j.bbr.2014.07.016 PubMedCrossRefGoogle Scholar
  39. Halberstadt A, Geyer M (2010) LSD but not lisuride disrupts prepulse inhibition in rats by activating the 5-HT2A receptor. Psychopharmacology 208(2):179–189. doi:10.1007/s00213-009-1718-x PubMedCrossRefGoogle Scholar
  40. Halberstadt AL, Geyer MA (2011) Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology 61(3):364–381. doi:10.1016/j.neuropharm.2011.01.017 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Halgren E, Walter RD, Cherlow DG, Crandall PH (1978) Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala. Brain 101(1):83–115. doi:10.1093/brain/101.1.83 PubMedCrossRefGoogle Scholar
  42. Hobson JA (2001) The dream drugstore: chemically altered states of consciousness. MIT Press, CambridgeGoogle Scholar
  43. Hobson JA (2009) REM sleep and dreaming: towards a theory of protoconsciousness. Nature Reviews Neuroscience 10(11):803–813. doi:10.1038/nrn2716 PubMedGoogle Scholar
  44. Jacobs B (1978) Dreams and hallucinations: a common neurochemical mechanism mediating their phenomenological similarities. Neurosci Biobehav Rev 2(1):59–69. doi:10.1016/0149-7634(78)90007-6 CrossRefGoogle Scholar
  45. Johnson MW, Richards W, Griffiths R (2008) Human hallucinogen research: guidelines for safety. J Psychopharmacol 22(6):603–620. doi:10.1177/0269881108093587 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kahn D (2013) Brain basis of self: self-organization and lessons from dreaming. Front Psychol 4(1):408. doi:10.3389/fpsyg.2013.00408 PubMedPubMedCentralGoogle Scholar
  47. Kometer M, Schmidt A, Jäncke L, Vollenweider FX (2013) Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. J Neurosci 33(25):10544–10551. doi:10.1523/JNEUROSCI.3007-12.2013 PubMedCrossRefGoogle Scholar
  48. Kometer M, Pokorny T, Seifritz E, Vollenweider FX (2015) Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations. Psychopharmacology 232(19):3663–3676. doi:10.1007/s00213-015-4026-7
  49. Krebs-Thomson K, Geyer MA (1998) Evidence for a functional interaction between 5-HT1A and 5-HT2 receptors in rats. Psychopharmacology 140(1):69–74. doi:10.1007/s002130050740 PubMedCrossRefGoogle Scholar
  50. LaBerge S, Rheingold H (1991) Exploring the world of lucid dreaming. Ballantine Books, New YorkGoogle Scholar
  51. Lakoff G (1993) How metaphor structures dreams. Dreaming 3(2):77–98. doi:10.1037/h0094373 CrossRefGoogle Scholar
  52. Landon M, Fischer R (1970) On similar linguistic structures in creative performance and psilocybin-induced experience. Confinia psychiatrica 13(2):115–138Google Scholar
  53. Lebedev AV, Lövdén M, Rosenthal G, Feilding A, Nutt DJ, Carhart-Harris RL (2015) Finding the self by losing the self: neural correlates of ego-dissolution under psilocybin. Hum Brain Mapp 36(8):3137–3153. doi:10.1002/hbm.22833 PubMedCrossRefGoogle Scholar
  54. Leuner H (1968) Basic functions involved in the psychotherapeutic effect of psychotomimetics. In: Shlien JM (ed) Research in psychotherapy. American Psychological Association, Washington, pp 466–470CrossRefGoogle Scholar
  55. Leuner H (1969) Guided affective imagery (GAI). A method of intensive psychotherapy. Am J Psychother 23(1):4–21PubMedGoogle Scholar
  56. Leuner H (1973) Creativity and modification of consciousness. Confinia psychiatrica 16(3):141–158Google Scholar
  57. Leuner H (1981) Halluzinogene. Hans Huber, BernGoogle Scholar
  58. Leysen JE, Niemegeers CJ, van Nueten JM, Laduron PM (1982) [3H]Ketanserin (R 41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol 21(2):301–314PubMedGoogle Scholar
  59. Limosani I, D'Agostino A, Manzone ML, Scarone S (2011) Bizarreness in dream reports and waking fantasies of psychotic schizophrenic and manic patients: empirical evidences and theoretical consequences. Psychiatry Res 189(2):195–199. doi:10.1016/j.psychres.2011.02.023 PubMedCrossRefGoogle Scholar
  60. Llinás R, Ribary U (1993) Coherent 40-Hz oscillation characterizes dream state in humans. Proc Natl Acad Sci U S A 90(5):2078–2081. doi:10.1073/pnas.90.5.2078 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Maquet P, Péters J, Aerts J, Delfiore G, Degueldre C, Luxen A, Franck G (1996) Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383(6596):163–166. doi:10.1038/383163a0 PubMedCrossRefGoogle Scholar
  62. Marona-Lewicka D, Nichols DE (2007) Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol Biochem Behav 87(4):453–461. doi:10.1016/j.pbb.2007.06.001 PubMedCrossRefGoogle Scholar
  63. Marona-Lewicka D, Thisted RA, Nichols DE (2005) Distinct temporal phases in the behavioral pharmacology of LSD: dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacology 180(3):427–435. doi:10.1007/s00213-005-2183-9 PubMedCrossRefGoogle Scholar
  64. Martindale C, Fischer R (1977) The effects of psilocybin on primary process content in language. Confinia psychiatrica 20(4):195–202Google Scholar
  65. Massimini M, Ferrarelli F, Murphy M, Huber R, Riedner B, Casarotto S, Tononi G (2010) Cortical reactivity and effective connectivity during REM sleep in humans. Cognitive neuroscience 1(3):176–183. doi:10.1080/17588921003731578 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mégevand P, Groppe DM, Goldfinger MS, Hwang ST, Kingsley PB, Davidesco I, Mehta AD (2014) Seeing scenes: topographic visual hallucinations evoked by direct electrical stimulation of the parahippocampal place area. J Neurosci 34(16):5399–5405. doi:10.1523/JNEUROSCI.5202-13.2014 PubMedCrossRefGoogle Scholar
  67. Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 27(7):1159–1172. doi:10.1016/j.pnpbp.2003.09.010 CrossRefGoogle Scholar
  68. Meltzer HY, Mills R, Revell S, Williams H, Johnson A, Bahr D, Friedman JH (2009) Pimavanserin, a serotonin2A receptor inverse agonist, for the treatment of Parkinson’s disease psychosis. Neuropsychopharmacology 35(4):881–892. doi:10.1038/npp.2009.176 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Merz J, Lehrl S, Galster V, Erzigkeit H (1975) MWT-B: ein Intelligenzkurztest. Psychiatrie Neurologie und Medizinische Psychologie 27(7):423–428Google Scholar
  70. Muthukumaraswamy SD, Carhart-Harris RL, Moran RJ, Brookes MJ, Williams TM, Erritzoe D, Sessa B, Papadopoulos A, Bolstridge M, Singh KD, Feilding A, Friston KJ, Nutt DJ (2013) Broadband cortical desynchronization underlies the human psychedelic state. J Neurosci 33(38):15171–15183. doi:10.1523/JNEUROSCI.2063-13.2013
  71. Muzio JN, Roffwarg HP, Kaufman E (1966) Alterations in the nocturnal sleep cycle resulting from LSD. Electroencephalogr Clin Neurophysiol 21(4):313–324. doi:10.1016/0013-4694(66)90037-X PubMedCrossRefGoogle Scholar
  72. Nichols DE (2004) Hallucinogens. Pharmacol Ther 101(2):131–181. doi:10.1016/j.pharmthera.2003.11.002 PubMedCrossRefGoogle Scholar
  73. Nir Y, Tononi G (2010) Dreaming and the brain: from phenomenology to neurophysiology. Trends Cogn Sci 14(2):88–100. doi:10.1016/j.tics.2009.12.001 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Pace-Schott EF (2008) Serotonin and dreaming. In: Monti JM, Pandi-Perumal SR, Jacobs BL, Nutt DJ (eds) Serotonin and sleep: molecular, functional and clinical aspects. Birkhäuser Verlag, Basel, pp 307–324CrossRefGoogle Scholar
  75. Pace-Schott EF, Gersh T, Silvestri R, Stickgold R, Salzman C, Hobson JA (2001) SSRI treatment suppresses dream recall frequency but increases subjective dream intensity in normal subjects. J Sleep Res 10(2):129–142. doi:10.1046/j.1365-2869.2001.00249.x PubMedCrossRefGoogle Scholar
  76. Passie T, Halpern JH, Stichtenoth DO, Emrich HM, Hintzen A (2008) The pharmacology of lysergic acid diethylamide: a review. CNS neuroscience & therapeutics 14(4):295–314. doi:10.1111/j.1755-5949.2008.00059.x CrossRefGoogle Scholar
  77. Persson B, Pettersson A, Hedner T (1987) Pharmacokinetics of ketanserin in patients with essential hypertension. Eur J Clin Pharmacol 32(3):259–265. doi:10.1007/BF00607573 PubMedCrossRefGoogle Scholar
  78. Petri G, Expert P, Turkheimer F, Carhart-Harris R, Nutt D, Hellyer PJ, Vaccarino F (2014) Homological scaffolds of brain functional networks. J R Soc Interface 11(101):20140873. doi:10.1098/rsif.2014.0873 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Pines M (1976) A psychoanalytic view of sleep. Postgrad Med J 52(603):26–31. doi:10.1136/pgmj.52.603.26 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Pokorny T, Preller KH, Kraehenmann R, Vollenweider FX (2016) Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience. Eur Neuropsychopharmacol 26(4):756–766. doi:10.1016/j.euroneuro.2016.01.005
  81. Preller KH, Herdener M, Pokorny T, Planzer A, Kraehenmann R, Stämpfli P, Liechti ME, Seifritz E, Vollenweider FX (2017) The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Curr Biol 27(3):451–457. doi:10.1016/j.cub.2016.12.030 PubMedCrossRefGoogle Scholar
  82. Quednow BB, Kometer M, Geyer MA, Vollenweider FX (2012) Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology 37(3):630–640. doi:10.1038/npp.2011.228 PubMedCrossRefGoogle Scholar
  83. Rasmussen AR, Parnas J (2015) Anomalies of imagination and disordered self in schizophrenia spectrum disorders. Psychopathology 48(5):317–323. doi:10.1159/000431291 PubMedCrossRefGoogle Scholar
  84. Rechtschaffen A (1978) The single-mindedness and isolation of dreams. Sleep 1(1):97–109. doi:10.1093/sleep/1.1.97 PubMedCrossRefGoogle Scholar
  85. Rittenhouse CD, Stickgold R, Hobson JA (1994) Constraint on the transformation of characters, objects, and settings in dream reports. Conscious Cogn 3(1):100–113. doi:10.1006/ccog.1994.1007 CrossRefGoogle Scholar
  86. Roseman L, Sereno MI, Leech R, Kaelen M, Orban C, McGonigle J, Feilding A, Nutt DJ, Carhart-Harris RL (2016) LSD alters eyes-closed functional connectivity within the early visual cortex in a retinotopic fashion. Hum Brain Mapp 37(8):3031–3040. doi:10.1002/hbm.23224 PubMedCrossRefGoogle Scholar
  87. Sandison RA (1954) Psychological aspects of the LSD treatment of the neuroses. J Ment Sci 100(419):508–515. doi:10.1192/bjp.100.419.508 PubMedGoogle Scholar
  88. Sandison RA, Whitelaw JD (1957) Further studies in the therapeutic value of lysergic acid diethylamide in mental illness. J Ment Sci 103(431):332–343. doi:10.1192/bjp.103.431.332 PubMedGoogle Scholar
  89. Sandison RA, Spencer AM, Whitelaw JD (1954) The therapeutic value of lysergic acid diethylamide in mental illness. J Ment Sci 100(419):491–507. doi:10.1192/bjp.100.419.491 PubMedGoogle Scholar
  90. Sass LA, Byrom G (2015) Self-disturbance and the bizarre: on incomprehensibility in schizophrenic delusions. Psychopathology 48(5):293–300. doi:10.1159/000437210 PubMedCrossRefGoogle Scholar
  91. Savage C (1955) Variations in ego feeling induced by d-lysergic acid diethylamide (LSD-25). Psychoanal Rev 42(1):1–16PubMedGoogle Scholar
  92. Scarone S, Manzone ML, Gambini O, Kantzas I, Limosani I, D'Agostino A, Hobson JA (2008) The dream as a model for psychosis: an experimental approach using bizarreness as a cognitive marker. Schizophr Bull 34(3):515–522. doi:10.1093/schbul/sbm116 PubMedCrossRefGoogle Scholar
  93. Schmid Y, Enzler F, Gasser P, Grouzmann E, Preller KH, Vollenweider FX, Brenneisen R, Müller F, Borgwardt S, Liechti ME (2015) Acute effects of lysergic acid diethylamide in healthy subjects. Biol Psychiatry 78(8):544–553. doi:10.1016/j.biopsych.2014.11.015 PubMedCrossRefGoogle Scholar
  94. Schreiber R, Brocco M, Audinot V, Gobert A, Veiga S, Millan MJ (1995) (1-(2,5-Dimethoxy-4 iodophenyl)-2-aminopropane)-induced head-twitches in the rat are mediated by 5-hydroxytryptamine (5-HT)2A receptors: modulation by novel 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists. J Pharmacol Exp Ther 273(1):101–112PubMedGoogle Scholar
  95. Sessa B (2008) Is it time to revisit the role of psychedelic drugs in enhancing human creativity? J Psychopharmacol 22(8):821–827. doi:10.1177/0269881108091597 PubMedCrossRefGoogle Scholar
  96. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The mini-International neuropsychiatric interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(Suppl. 20):22–33Google Scholar
  97. Sinke C, Halpern JH, Zedler M, Neufeld J, Emrich HM, Passie T (2012) Genuine and drug-induced synesthesia: a comparison. Conscious Cogn 21(3):1419–1434. doi:10.1016/j.concog.2012.03.009 PubMedCrossRefGoogle Scholar
  98. Sio U, Monaghan P, Ormerod T (2013) Sleep on it, but only if it is difficult: effects of sleep on problem solving. Mem Cogn 41(2):159–166. doi:10.3758/s13421-012-0256-7 CrossRefGoogle Scholar
  99. Snyder SH, Faillace LA, Weingartner H (1969) A new psychotropic agent. Psychological and physiological effects of 2,5-dimethoxy-4-ethyl amphetamine (DOET) in man. Arch Gen Psychiatry 21(1):95–101. doi:10.1001/archpsyc.1969.01740190097014 PubMedCrossRefGoogle Scholar
  100. Snyder SH, Weingartner H, Faillace LA (1971) DOET (2,5-dimethoxy-4-ethylamphetamine), a new psychotropic drug: effects of varying doses in man. Arch Gen Psychiatry 24(1):50–55. doi:10.1001/archpsyc.1971.01750070052006 PubMedCrossRefGoogle Scholar
  101. Solms M (2000) Dreaming and REM sleep are controlled by different brain mechanisms. The Behavioral and brain sciences 23(6):843–850. doi:10.1017/S0140525X00003988 PubMedCrossRefGoogle Scholar
  102. Spitzer M, Thimm M, Hermle L, Holzmann P, Kovar K-A, Heimann H, Gouzoulis-Mayfrank E, Kischka U, Schneider F (1996) Increased activation of indirect semantic associations under psilocybin. Biol Psychiatry 39(12):1055–1057. doi:10.1016/0006-3223(95)00418-1 PubMedCrossRefGoogle Scholar
  103. Strassman RJ (1995) Human psychopharmacology of N,N-dimethyltryptamine. Behav Brain Res 73(1):121–124. doi:10.1016/0166-4328(96)00081-2 CrossRefGoogle Scholar
  104. Studerus E, Kometer M, Hasler F, Vollenweider FX (2011) Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J Psychopharmacol 25(11):1434–1452. doi:10.1177/0269881110382466 PubMedCrossRefGoogle Scholar
  105. Stumbrys T, Erlacher D, Malinowski P (2015) Meta-awareness during day and night. Imagination, Cognition and Personality 34(4):415–433. doi:10.1177/0276236615572594 CrossRefGoogle Scholar
  106. Sweat N, Bates L, Hendricks PS (2016) The associations of naturalistic classic psychedelic use, mystical experience, and creative problem solving. J Psychoactive Drugs 48(5):344–350. doi:10.1080/02791072.2016.1234090 PubMedCrossRefGoogle Scholar
  107. Tagliazucchi E, Carhart-Harris R, Leech R, Nutt D, Chialvo DR (2014) Enhanced repertoire of brain dynamical states during the psychedelic experience. Hum Brain Mapp 35(11):5442–5456. doi:10.1002/hbm.22562 PubMedCrossRefGoogle Scholar
  108. Terhune DB, Luke DP, Kaelen M, Bolstridge M, Feilding A, Nutt D, Carhart-Harris R, Ward J (2016) A placebo-controlled investigation of synaesthesia-like experiences under LSD. Neuropsychologia 88:28–34. doi:10.1016/j.neuropsychologia.2016.04.005 PubMedCrossRefGoogle Scholar
  109. Thompson DF, Pierce DR (1999) Drug-induced nightmares. Ann Pharmacother 33(1):93–98. doi:10.1345/aph.18150 PubMedCrossRefGoogle Scholar
  110. Torda C (1968) Contribution to serotonin theory of dreaming (LSD infusion). New York state journal of medicine 68(9):1135–1138PubMedGoogle Scholar
  111. Valle M, Maqueda AE, Rabella M, Rodríguez-Pujadas A, Antonijoan RM, Romero S, Alonso JF, Mañanas MÀ, Barker S, Friedlander P, Feilding A, Riba J (2016) Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans. Eur Neuropsychopharmacol 26(7):1161–1175. doi:10.1016/j.euroneuro.2016.03.012 PubMedCrossRefGoogle Scholar
  112. Vollenweider FX, Geyer MA (2001) A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res Bull 56(5):495–507. doi:10.1016/S0361-9230(01)00646-3 PubMedCrossRefGoogle Scholar
  113. Vollenweider FX, Leenders KL, Scharfetter C, Maguire P, Stadelmann O, Angst J (1997) Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology 16(5):357–372. doi:10.1016/S0893-133X(96)00246-1 PubMedCrossRefGoogle Scholar
  114. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Bäbler A, Vogel H, Hell D (1998) Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9(17):3897–3902PubMedCrossRefGoogle Scholar
  115. Voss U, Holzmann R, Hobson A, Paulus W, Koppehele-Gossel J, Klimke A, Nitsche MA (2014) Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat Neurosci 17(6):810–812. doi:10.1038/nn.3719 PubMedCrossRefGoogle Scholar
  116. Wagner U, Gais S, Haider H, Verleger R, Born J (2004) Sleep inspires insight. Nature 427(6972):352–355. doi:10.1038/nature02223
  117. Weingartner H, Snyder SH, Faillace LA, Markley H (1970) Altered free associations: some cognitive effects of DOET (2,5-dimethoxy-4-ethylamphetamine). Behav Sci 15(4):297–303. doi:10.1002/bs.3830150402 CrossRefGoogle Scholar
  118. Weintraub W, Silverstein AB, Klee GD (1959) The effect of LSD on the associative processes. J Nerv Ment Dis 128(5):409–414PubMedCrossRefGoogle Scholar
  119. Williams J, Merritt J, Rittenhouse C, Hobson JA (1992) Bizarreness in dreams and fantasies. Conscious Cogn 1(2):172–185. doi:10.1016/1053-8100(92)90059-J CrossRefGoogle Scholar
  120. Wittchen H-U, Fydrich T (1997) Strukturiertes Klinisches Interview für DSM-IV (SKID-I und SKID-II). Hogrefe, GöttingenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric HospitalUniversity of ZurichZurichSwitzerland
  2. 2.Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric HospitalUniversity of ZurichZurichSwitzerland
  3. 3.Department of Psychosomatic Medicine and PsychotherapyUniversity of UlmUlmGermany

Personalised recommendations