, Volume 234, Issue 12, pp 1803–1813 | Cite as

Phosphodiesterase-1b (Pde1b) knockout mice are resistant to forced swim and tail suspension induced immobility and show upregulation of Pde10a

  • Jillian R. Hufgard
  • Michael T. Williams
  • Matthew R. Skelton
  • Olivera Grubisha
  • Filipa M. Ferreira
  • Helen Sanger
  • Mary E. Wright
  • Tracy M. Reed-Kessler
  • Kurt Rasmussen
  • Ronald S. Duman
  • Charles V. VorheesEmail author
Original Investigation



Major depressive disorder is a leading cause of suicide and disability. Despite this, current antidepressants provide insufficient efficacy in more than 60% of patients. Most current antidepressants are presynaptic reuptake inhibitors; postsynaptic signal regulation has not received as much attention as potential treatment targets.


We examined the effects of disruption of the postsynaptic cyclic nucleotide hydrolyzing enzyme, phosphodiesterase (PDE) 1b, on depressive-like behavior and the effects on PDE1B protein in wild-type (WT) mice following stress.


Littermate knockout (KO) and WT mice were tested in locomotor activity, tail suspension (TST), and forced swim tests (FST). FST was also used to compare the effects of two antidepressants, fluoxetine and bupropion, in KO versus WT mice. Messenger RNA (mRNA) expression changes were also determined. WT mice underwent acute or chronic stress and markers of stress and PDE1B expression were examined.


Pde1b KO mice exhibited decreased TST and FST immobility. When treated with antidepressants, both WT and KO mice showed decreased FST immobility and the effect was additive in KO mice. Mice lacking Pde1b had increased striatal Pde10a mRNA expression. In WT mice, acute and chronic stress upregulated PDE1B expression while PDE10A expression was downregulated after chronic but not acute stress.


PDE1B is a potential therapeutic target for depression treatment because of the antidepressant-like phenotype seen in Pde1b KO mice.


Phosphodiesterase PDE1B Pde1b knockout mice Stress resistance Forced swim test Pde brain gene expression 



This research was supported in part by NIH T32 ES007051 (JRH).

Compliance with ethical standards

Protocols were approved by the Institutional Animal Care and Use Committee.

Conflict of interest

Kurt Rasmussen, Olivera Grubisha, Filipa M. Ferreira, and Helen Sanger are employees of Eli Lilly & Company. No Eli Lilly-supplied products were used in the experiments reported herein. All other authors declare no conflict of interest.


  1. Cassano P, Fava M (2002) Depression and public health: an overview. J Psychosom Res 53:849–857CrossRefPubMedGoogle Scholar
  2. Castaneda T, Nogueiras R, Müller T, Krishna R, Grant E, Jones A, Ottaway N, Ananthakrishnan G, Pfluger P, Chaudhary N (2011) Decreased glucose tolerance and plasma adiponectin: resistin ratio in a mouse model of post-traumatic stress disorder. Diabetologia 54:900–909CrossRefPubMedGoogle Scholar
  3. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, Ferguson D, Tsai H-C, Pomeranz L, Christoffel DJ (2013) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493:532–536Google Scholar
  4. Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511CrossRefPubMedGoogle Scholar
  5. Cravens RW (1974) Effects of maternal undernutrition on offspring behavior: incentive value of a food reward and ability to escape from water. Dev Psychobiol 7:61–69CrossRefPubMedGoogle Scholar
  6. Cryan JF, Mombereau C, Vassout A (2005a) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625CrossRefPubMedGoogle Scholar
  7. Cryan JF, Valentino RJ, Lucki I (2005b) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 29:547–569CrossRefPubMedGoogle Scholar
  8. Dhir A, Kulkarni S (2008) Possible involvement of sigma-1 receptors in the anti-immobility action of bupropion, a dopamine reuptake inhibitor. Fundamental & clinical pharmacology 22:387–394CrossRefGoogle Scholar
  9. Dlaboga D, Hajjhussein H, O’Donnell JM (2008) Chronic haloperidol and clozapine produce different patterns of effects on phosphodiesterase-1B,-4B, and-10A expression in rat striatum. Neuropharmacology 54:745–754CrossRefPubMedGoogle Scholar
  10. Duman RS, Malberg J, Thome J (1999) Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 46:1181–1191CrossRefPubMedGoogle Scholar
  11. Ehrman L, Williams M, Schaefer T, Gudelsky G, Reed T, Fienberg A, Greengard P, Vorhees C (2006) Phosphodiesterase 1B differentially modulates the effects of methamphetamine on locomotor activity and spatial learning through DARPP32-dependent pathways: evidence from PDE1B-DARPP32 double-knockout mice. Genes Brain Behav 5:540–551CrossRefPubMedGoogle Scholar
  12. Essayan DM (2001) Cyclic nucleotide phosphodiesterases. J Allergy Clin Immunol 108:671–680CrossRefPubMedGoogle Scholar
  13. Fienberg A, Hiroi N, Mermelstein P, Song W-J, Snyder G, Nishi A, Cheramy A, O’callaghan J, Miller D, Cole D (1998) DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281:838–842CrossRefPubMedGoogle Scholar
  14. Filgueiras CC, Krahe TE, Medina AE (2010) Phosphodiesterase type 1 inhibition improves learning in rats exposed to alcohol during the third trimester equivalent of human gestation. Neurosci Lett 473:202–207CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fujita M, Hines CS, Zoghbi SS, Mallinger AG, Dickstein LP, Liow J-S, Zhang Y, Pike VW, Drevets WC, Innis RB (2012) Downregulation of brain phosphodiesterase type IV measured with 11C-(R)-rolipram positron emission tomography in major depressive disorder. Biol Psychiatry 72:548–554CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gómez-Pinedo U, Rodrigo R, Cauli O, Herraiz S, Garcia-Verdugo J-M, Pellicer B, Pellicer A, Felipo V (2010) cGMP modulates stem cells differentiation to neurons in brain in vivo. Neuroscience 165:1275–1283CrossRefPubMedGoogle Scholar
  17. Grauer SM, Pulito VL, Navarra RL, Kelly MP, Kelley C, Graf R, Langen B, Logue S, Brennan J, Jiang L (2009) Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia. J Pharmacol Exp Ther 331:574–590CrossRefPubMedGoogle Scholar
  18. Greenberg PE, Kessler RC, Birnbaum HG, Leong SA, Lowe SW, Berglund PA, Corey-Lisle PK (2003) The economic burden of depression in the United States: how did it change between 1990 and 2000? J Clin Psychiatry 64:1465–1475CrossRefPubMedGoogle Scholar
  19. Han P, Werber J, Surana M, Fleischer N, Michaeli T (1999) The calcium/calmodulin-dependent phosphodiesterase PDE1C down-regulates glucose-induced insulin secretion. J Biol Chem 274:22337–22344CrossRefPubMedGoogle Scholar
  20. Hansen R, Zhang H-T (2015) Phosphodiesterase-4 modulation as a potential therapeutic for cognitive loss in pathological and non-pathological aging: possibilities and pitfalls. Curr Pharm Des 21:291–302PubMedGoogle Scholar
  21. Hautman ER, Kokenge AN, Udobi KC, Williams MT, Vorhees CV, Skelton MR (2014) Female mice heterozygous for creatine transporter deficiency show moderate cognitive deficits. J Inherit Metab Dis 37:63–68CrossRefPubMedGoogle Scholar
  22. Hebb AL, Robertson HA (2007) Role of phosphodiesterases in neurological and psychiatric disease. Curr Opin Pharmacol 7:86–92CrossRefPubMedGoogle Scholar
  23. Höfgen N, Stange H, Schindler R, Lankau H-J, Grunwald C, Langen B, Egerland U, Tremmel P, Pangalos MN, Marquis KL (2010) Discovery of imidazo [1, 5-a] pyrido [3, 2-e] pyrazines as a new class of phosphodiesterase 10A inhibitors. J Med Chem 53:4399–4411CrossRefPubMedGoogle Scholar
  24. Jindal A, Mahesh R, Gautam B, Bhatt S, Pandey D (2012) Antidepressant-like effect of etazolate, a cyclic nucleotide phosphodiesterase 4 inhibitor—an approach using rodent behavioral antidepressant tests battery. Eur J Pharmacol 689:125–131CrossRefPubMedGoogle Scholar
  25. Jindal A, Mahesh R, Bhatt S (2013) Etazolate, a phosphodiesterase 4 inhibitor reverses chronic unpredictable mild stress-induced depression-like behavior and brain oxidative damage. Pharmacol Biochem Behav 105:63–70CrossRefPubMedGoogle Scholar
  26. Kelly MP, Adamowicz W, Bove S, Hartman AJ, Mariga A, Pathak G, Reinhart V, Romegialli A, Kleiman RJ (2014) Select 3′, 5′-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell Signal 26:383–397CrossRefPubMedGoogle Scholar
  27. Kennedy SH (2013) A review of antidepressant therapy in primary care: current practices and future directions. The Primary Care Companion for CNS Disorders 15Google Scholar
  28. Kim D, Rybalkin SD, Pi X, Wang Y, Zhang C, Munzel T, Beavo JA, Berk BC, Yan C (2001) Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation 104:2338–2343CrossRefPubMedGoogle Scholar
  29. Kleiman RJ, Kimmel LH, Bove SE, Lanz TA, Harms JF, Romegialli A, Miller KS, Willis A, des Etages S, Kuhn M (2011) Chronic suppression of phosphodiesterase 10A alters striatal expression of genes responsible for neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in Huntington’s disease. J Pharmacol Exp Ther 336:64–76CrossRefPubMedGoogle Scholar
  30. Lakics V, Karran EH, Boess FG (2010) Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 59:367–374CrossRefPubMedGoogle Scholar
  31. Li P, Zheng H, Zhao J, Zhang L, Yao W, Zhu H, Beard JD, Ida K, Lane W, Snell G (2016) Discovery of potent and selective inhibitors of phosphodiesterase 1 for the treatment of cognitive impairment associated with neurodegenerative and neuropsychiatric diseases. J Med Chem 59:1149–1164CrossRefPubMedGoogle Scholar
  32. Mason SS, Baker KB, Davis KW, Pogorelov VM, Malbari MM, Ritter R, Wray SP, Gerhardt B, Lanthorn TH, Savelieva KV (2009) Differential sensitivity to SSRI and tricyclic antidepressants in juvenile and adult mice of three strains. Eur J Pharmacol 602:306–315CrossRefPubMedGoogle Scholar
  33. Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13:290–314CrossRefPubMedPubMedCentralGoogle Scholar
  34. Natesan S, Ashworth S, Nielsen J, Tang S, Salinas C, Kealey S, Lauridsen J, Stensbøl T, Gunn R, Rabiner E (2014) Effect of chronic antipsychotic treatment on striatal phosphodiesterase 10A levels: a [11C] MP-10 PET rodent imaging study with ex vivo confirmation. Transl Psychiatry 4:e376CrossRefPubMedPubMedCentralGoogle Scholar
  35. O’Donnell JM, Zhang H-T (2004) Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). Trends Pharmacol Sci 25:158–163CrossRefPubMedGoogle Scholar
  36. Polli JW, Kincaid RL (1994) Expression of a calmodulin-dependent phosphodiesterase isoform (PDE1B1) correlates with brain regions having extensive dopaminergic innervation. J Neurosci 14:1251–1261PubMedGoogle Scholar
  37. Porsolt RD, Bertin A, Blavet N, Deniel M, Jalfre M (1979) Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol 57:201–210CrossRefPubMedGoogle Scholar
  38. Reed TM (2000) Characterization of phosphodiesterase 1B-deficient mice: role of PDE1B in central nervous system function. ProQuest Dissertations & ThesesGoogle Scholar
  39. Reed TM, Repaske DR, Snyder GL, Greengard P, Vorhees CV (2002) Phosphodiesterase 1B knock-out mice exhibit exaggerated locomotor hyperactivity and DARPP-32 phosphorylation in response to dopamine agonists and display impaired spatial learning. J Neurosci 22:5188–5197PubMedGoogle Scholar
  40. Reierson GW, Guo S, Mastronardi C, Licinio J, Wong M-L (2011) cGMP signaling, phosphodiesterases and major depressive disorder. Curr Neuropharmacol 9:715CrossRefPubMedPubMedCentralGoogle Scholar
  41. Rybalkin SD, Rybalkina I, Beavo JA, Bornfeldt KE (2002) Cyclic nucleotide phosphodiesterase 1C promotes human arterial smooth muscle cell proliferation. Circ Res 90:151–157CrossRefPubMedGoogle Scholar
  42. Schaefer T, Braun A, Amos-Kroohs R, Williams M, Ostertag E, Vorhees C (2012) A new model of Pde4d deficiency: genetic knock-down of PDE4D enzyme in rats produces an antidepressant phenotype without spatial cognitive effects. Genes Brain Behav 11:614–622CrossRefPubMedPubMedCentralGoogle Scholar
  43. Schmidt CJ, Chapin DS, Cianfrogna J, Corman ML, Hajos M, Harms JF, Hoffman WE, Lebel LA, McCarthy SA, Nelson FR (2008) Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Ther 325:681–690CrossRefPubMedGoogle Scholar
  44. Siuciak JA, Chapin DS, Harms JF, Lebel LA, McCarthy SA, Chambers L, Shrikhande A, Wong S, Menniti FS, Schmidt CJ (2006a) Inhibition of the striatum-enriched phosphodiesterase PDE10A: a novel approach to the treatment of psychosis. Neuropharmacology 51:386–396CrossRefPubMedGoogle Scholar
  45. Siuciak JA, McCarthy SA, Chapin DS, Fujiwara RA, James LC, Williams RD, Stock JL, McNeish JD, Strick CA, Menniti FS (2006b) Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: evidence for altered striatal function. Neuropharmacology 51:374–385CrossRefPubMedGoogle Scholar
  46. Siuciak JA, McCarthy SA, Chapin DS, Reed T, Vorhees C, Repaske D (2007) Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-1B (PDE1B) enzyme. Neuropharmacology 53:113–124CrossRefPubMedGoogle Scholar
  47. Siuciak JA, McCarthy SA, Chapin DS, Martin AN (2008) Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology 197:115–126CrossRefPubMedGoogle Scholar
  48. Snyder GL, Prickaerts J, Wadenberg M-L, Zhang L, Zheng H, Yao W, Akkerman S, Zhu H, Hendrick JP, Vanover KE (2016) Preclinical profile of ITI-214, an inhibitor of phosphodiesterase 1, for enhancement of memory performance in rats. Psychopharmacology: 1–12Google Scholar
  49. Stappenbeck TS, Virgin HW (2016) Accounting for reciprocal host–microbiome interactions in experimental science. Nature 534:191–199CrossRefPubMedGoogle Scholar
  50. Svenningsson P, Lindskog M, Ledent C, Parmentier M, Greengard P, Fredholm BB, Fisone G (2000) Regulation of the phosphorylation of the dopamine-and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors. Proc Natl Acad Sci 97:1856–1860CrossRefPubMedPubMedCentralGoogle Scholar
  51. Svenningsson P, Tzavara ET, Liu F, Fienberg AA, Nomikos GG, Greengard P (2002) DARPP-32 mediates serotonergic neurotransmission in the forebrain. Proc Natl Acad Sci 99:3188–3193CrossRefPubMedPubMedCentralGoogle Scholar
  52. Svenningsson P, Tzavara ET, Carruthers R, Rachleff I, Wattler S, Nehls M, McKinzie DL, Fienberg AA, Nomikos GG, Greengard P (2003) Diverse psychotomimetics act through a common signaling pathway. Science 302:1412–1415CrossRefPubMedGoogle Scholar
  53. Svenningsson P, Nishi A, Fisone G, Girault J-A, Nairn AC, Greengard P (2004) DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44:269–296CrossRefPubMedGoogle Scholar
  54. Wang ZZ, Zhang Y, Liu YQ, Zhao N, Zhang YZ, Yuan L, An L, Li J, Wang XY, Qin JJ (2013) RNA interference-mediated phosphodiesterase 4D splice variants knock-down in the prefrontal cortex produces antidepressant-like and cognition-enhancing effects. Br J Pharmacol 168:1001–1014CrossRefPubMedPubMedCentralGoogle Scholar
  55. Xu Y, Zhang H-T, O’Donnell JM (2011) Phosphodiesterases in the central nervous system: implications in mood and cognitive disorders. Phosphodiesterases as Drug Targets. Springer, pp 447–485Google Scholar
  56. Xu Y, Pan J, Chen L, Zhang C, Sun J, Li J, Nguyen L, Nair N, Zhang H, O’Donnell JM (2013) Phosphodiesterase-2 inhibitor reverses corticosterone-induced neurotoxicity and related behavioural changes via cGMP/PKG dependent pathway. Int J Neuropsychopharmacol 16:835–847CrossRefPubMedGoogle Scholar
  57. Zhang H-T, Huang Y, Jin SC, Frith SA, Suvarna N, Conti M, James M (2002) Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodiesterase enzyme. Neuropsychopharmacology 27:587–595PubMedGoogle Scholar
  58. Zhang H-T, Huang Y, Masood A, Stolinski LR, Li Y, Zhang L, Dlaboga D, Jin SC, Conti M, O’Donnell JM (2008) Anxiogenic-like behavioral phenotype of mice deficient in phosphodiesterase 4B (PDE4B). Neuropsychopharmacology 33:1611–1623CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jillian R. Hufgard
    • 1
  • Michael T. Williams
    • 1
  • Matthew R. Skelton
    • 1
  • Olivera Grubisha
    • 2
  • Filipa M. Ferreira
    • 2
  • Helen Sanger
    • 2
  • Mary E. Wright
    • 3
  • Tracy M. Reed-Kessler
    • 3
  • Kurt Rasmussen
    • 4
  • Ronald S. Duman
    • 5
  • Charles V. Vorhees
    • 1
    Email author
  1. 1.Division of Neurology (MLC 7044), Department of PediatricsCincinnati Children’s Research Foundation and University of Cincinnati College of MedicineCincinnatiUSA
  2. 2.Neuroscience Research DivisionLilly Research CentreSurreyUK
  3. 3.Department of BiologyMount Saint Joseph UniversityCincinnatiUSA
  4. 4.Lilly Corporate CenterLilly Research LaboratoriesIndianapolisUSA
  5. 5.Department of PsychiatryYale University School of MedicineNew HavenUSA

Personalised recommendations