, Volume 234, Issue 2, pp 173–184 | Cite as

Antipsychotic inductors of brain hypothermia and torpor-like states: perspectives of application

  • Yury S. TarahovskyEmail author
  • Irina S. Fadeeva
  • Natalia P. Komelina
  • Maxim O. Khrenov
  • Nadezhda M. Zakharova


Hypothermia and hypometabolism (hypometabothermia) normally observed during natural hibernation and torpor, allow animals to protect their body and brain against the damaging effects of adverse environment. A similar state of hypothermia can be achieved under artificial conditions through physical cooling or pharmacological effects directed at suppression of metabolism and the processes of thermoregulation. In these conditions called torpor-like states, the mammalian ability to recover from stroke, heart attack, and traumatic injuries greatly increases. Therefore, the development of therapeutic methods for different pathologies is a matter of great concern. With the discovery of the antipsychotic drug chlorpromazine in the 1950s of the last century, the first attempts to create a pharmacologically induced state of hibernation for therapeutic purposes were made. That was the beginning of numerous studies in animals and the broad use of therapeutic hypothermia in medicine. Over the last years, many new agents have been discovered which were capable of lowering the body temperature and inhibiting the metabolism. The psychotropic agents occupy a significant place among them, which, in our opinion, is not sufficiently recognized in the contemporary literature. In this review, we summarized the latest achievements related to the ability of modern antipsychotics to target specific receptors in the brain, responsible for the initiation of hypometabothermia.


Antipsychotic Torpor Hibernation Hypothermia Stroke Hypothalamus Hippocampus 



The authors would like to express their sincere thanks to the Advanced Research Fund of Russian Federation for the support.


  1. Alam HB (2012) Translational barriers and opportunities for emergency preservation and resuscitation in severe injuries. Br J Surg 99(Suppl 1):29–39PubMedCrossRefGoogle Scholar
  2. Alonso-Alconada D, Broad KD, Bainbridge A, Chandrasekaran M, Faulkner SD, Kerenyi A, Hassell J, Rocha-Ferreira E, Hristova M, Fleiss B, Bennett K, Kelen D, Cady E, Gressens P, Golay X, Robertson NJ (2015) Brain cell death is reduced with cooling by 3.5 degrees C to 5 degrees C but increased with cooling by 8.5 degrees C in a piglet asphyxia model. Stroke 46:275–278PubMedCrossRefGoogle Scholar
  3. Arant RJ, Goo MS, Gill PD, Nguyen Y, Watson KD, Hamilton JS, Horowitz JM, Horwitz BA (2011) Decreasing temperature shifts hippocampal function from memory formation to modulation of hibernation bout duration in Syrian hamsters. Am J Physiol Regul Integr Comp Physiol 301:R438–R447PubMedCrossRefGoogle Scholar
  4. Arinell K, Sahdo B, Evans AL, Arnemo JM, Baandrup U, Frobert O (2012) Brown bears (Ursus arctos) seem resistant to atherosclerosis despite highly elevated plasma lipids during hibernation and active state. Clin Transl Sci 5:269–272PubMedCrossRefGoogle Scholar
  5. Aslami H, Juffermans NP (2010) Induction of a hypometabolic state during critical illness−a new concept in the ICU? Neth J Med 68:190–198PubMedGoogle Scholar
  6. Ballinger MA, Hess C, Napolitano MW, Bjork JA, Andrews MT (2016) Seasonal changes in brown adipose tissue mitochondria in a mammalian hibernator: from gene expression to function. Am J Physiol Regul Integr Comp Physiol 311:R325–R336PubMedCrossRefGoogle Scholar
  7. Bejaoui M, Pantazi E, Folch-Puy E, Baptista PM, Garcia-Gil A, Adam R, Rosello-Catafau J (2015) Emerging concepts in liver graft preservation. World J Gastroenterol 21:396–407PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bocharova LS, Gordon RI, Rogachevskii VV, Ignat'ev DA, Khutsian SS (2011) Cyclic structural changes in endoplasmic reticulum and Golgi apparatus in the hippocampal neurons of ground squirrels during hibernation. Tsitologiia 53:259–269PubMedGoogle Scholar
  9. Bortolozzi A, Masana M, Diaz-Mataix L, Cortes R, Scorza MC, Gingrich JA, Toth M, Artigas F (2010) Dopamine release induced by atypical antipsychotics in prefrontal cortex requires 5-HT(1A) receptors but not 5-HT(2A) receptors. Int J Neuropsychopharmacol 13:1299–1314PubMedCrossRefGoogle Scholar
  10. Boules M, Liang Y, Briody S, Miura T, Fauq I, Oliveros A, Wilson M, Khaniyev S, Williams K, Li Z, Qi Y, Katovich M, Richelson E (2010) NT79: a novel neurotensin analog with selective behavioral effects. Brain Res 1308:35–46PubMedCrossRefGoogle Scholar
  11. Boules MM, Fredrickson P, Muehlmann AM, Richelson E (2014) Elucidating the role of neurotensin in the pathophysiology and management of major mental disorders. Behav Sci (Basel) 4:125–153CrossRefGoogle Scholar
  12. Bullmann T, Seeger G, Stieler J, Hanics J, Reimann K, Kretzschmann TP, Hilbrich I, Holzer M, Alpar A, Arendt T (2016) Tau phosphorylation-associated spine regression does not impair hippocampal-dependent memory in hibernating golden hamsters. Hippocampus 26:301–318PubMedCrossRefGoogle Scholar
  13. Byon CH, Han T, Wu J, Hui ST (2015) Txnip ablation reduces vascular smooth muscle cell inflammation and ameliorates atherosclerosis in apolipoprotein E knockout mice. Atherosclerosis 241:313–321PubMedPubMedCentralCrossRefGoogle Scholar
  14. Candy B, Jackson KC, Jones L, Leurent B, Tookman A, King M (2012) Drug therapy for delirium in terminally ill adult patients. Cochrane Database Syst Rev 11:CD004770PubMedGoogle Scholar
  15. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181PubMedCrossRefGoogle Scholar
  16. Cerovecki A, Musil R, Klimke A, Seemuller F, Haen E, Schennach R, Kuhn KU, Volz HP, Riedel M (2013) Withdrawal symptoms and rebound syndromes associated with switching and discontinuing atypical antipsychotics: theoretical background and practical recommendations. CNS Drugs 27:545–572PubMedCrossRefGoogle Scholar
  17. Cerri M, Mastrotto M, Tupone D, Martelli D, Luppi M, Perez E, Zamboni G, Amici R (2013) The inhibition of neurons in the central nervous pathways for thermoregulatory cold defense induces a suspended animation state in the rat. J Neurosci 33:2984–2993PubMedCrossRefGoogle Scholar
  18. Chainy GB, Paital B, Dandapat J (2016) An overview of seasonal changes in oxidative stress and antioxidant defence parameters in some invertebrate and vertebrate species. Scientifica (Cairo ) 2016:6126570Google Scholar
  19. Chen D, Dang BL, Huang JZ, Chen M, Wu D, Xu ML, Li R, Yan GR (2015) MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the miR-373-TXNIP-HIF1alpha-TWIST signaling axis in breast cancer. Oncotarget 6:32701–32712PubMedPubMedCentralGoogle Scholar
  20. Choi KE, Hall CL, Sun JM, Wei L, Mohamad O, Dix TA, Yu SP (2012) A novel stroke therapy of pharmacologically induced hypothermia after focal cerebral ischemia in mice. FASEB J 26:2799–2810PubMedPubMedCentralCrossRefGoogle Scholar
  21. Christian SL, Ross AP, Zhao HW, Kristenson HJ, Zhan X, Rasley BT, Bickler PE, Drew KL (2008) Arctic ground squirrel (Spermophilus parryii) hippocampal neurons tolerate prolonged oxygen-glucose deprivation and maintain baseline ERK1/2 and JNK activation despite drastic ATP loss. J Cereb Blood Flow Metab 28:1307–1319PubMedPubMedCentralCrossRefGoogle Scholar
  22. Citrome L (2014) Treatment of bipolar depression: making sensible decisions. CNS Spectr 19(Suppl 1):4–11PubMedGoogle Scholar
  23. Clemett DA, Kendall DA, Cockett MI, Marsden CA, Fone KC (1999) Pindolol-insensitive [3H]-5-hydroxytryptamine binding in the rat hypothalamus; identity with 5-hydroxytryptamine7 receptors. Br J Pharmacol 127:236–242PubMedPubMedCentralCrossRefGoogle Scholar
  24. Coomans CP, Ramkisoensing A, Meijer JH (2015) The suprachiasmatic nuclei as a seasonal clock. Front Neuroendocrinol 37:29–42PubMedCrossRefGoogle Scholar
  25. Currie SE, Kortner G, Geiser F (2014) Heart rate as a predictor of metabolic rate in heterothermic bats. J Exp Biol 217:1519–1524PubMedCrossRefGoogle Scholar
  26. Dardente H, Hazlerigg DG, Ebling FJ (2014) Thyroid hormone and seasonal rhythmicity. Front Endocrinol (Lausanne) 5:19Google Scholar
  27. Davidson JO, Wassink G, van den Heuij LG, Bennet L, Gunn AJ (2015) Therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy—where to from here? Front Neurol 6:198PubMedPubMedCentralGoogle Scholar
  28. Doan KV, Kinyua AW, Yang DJ, Ko CM, Moh SH, Shong KE, Kim H, Park SK, Kim DH, Kim I, Paik JH, DePinho RA, Yoon SG, Kim IY, Seong JK, Choi YH, Kim KW (2016) FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun 7:12733PubMedPubMedCentralCrossRefGoogle Scholar
  29. Drew KL, Buck CL, Barnes BM, Christian SL, Rasley BT, Harris MB (2007) Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem 102:1713–1726PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dugbartey GJ, Bouma HR, Strijkstra AM, Boerema AS, Henning RH (2015) Induction of a torpor-like state by 5'-AMP does not depend on H2S production. PLoS One 10:e0136113PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ebling FJ (2014) On the value of seasonal mammals for identifying mechanisms underlying the control of food intake and body weight. Horm Behav 66:56–65PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fedorov VB, Goropashnaya AV, Toien O, Stewart NC, Chang C, Wang H, Yan J, Showe LC, Showe MK, Donahue SW, Barnes BM (2012) Preservation of bone mass and structure in hibernating black bears (Ursus americanus) through elevated expression of anabolic genes. Funct Integr Genomics 12:357–365PubMedPubMedCentralCrossRefGoogle Scholar
  33. Feifel D, Goldenberg J, Melendez G, Shilling PD (2010) The acute and subchronic effects of a brain-penetrating, neurotensin-1 receptor agonist on feeding, body weight and temperature. Neuropharmacology 58:195–198PubMedCrossRefGoogle Scholar
  34. Fick LG, Fuller A, Mitchell D (2005) Thermoregulatory, motor, behavioural, and nociceptive responses of rats to 3 long-acting neuroleptics. Can J Physiol Pharmacol 83:517–527PubMedCrossRefGoogle Scholar
  35. Forreider B, Pozivilko D, Kawaji Q, Geng X, Ding Y (2016) Hibernation-like neuroprotection in stroke by attenuating brain metabolic dysfunction. Prog Neurobiol (In Press)Google Scholar
  36. Fu W, Hu H, Dang K, Chang H, Du B, Wu X, Gao Y (2016) Remarkable preservation of Ca(2+) homeostasis and inhibition of apoptosis contribute to anti-muscle atrophy effect in hibernating Daurian ground squirrels. Sci Rep 6:27020PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gao K, Chi Y, Zhang X, Zhang H, Li G, Sun W, Takeda M, Yao J (2015) A novel TXNIP-based mechanism for Cx43-mediated regulation of oxidative drug injury. J Cell Mol Med 19:2469–2480PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gareri P, De Fazio P, Stilo M, Ferreri G, De Sarro G (2003) Conventional and atypical antipsychotics in the elderly: a review. Clin Drug Investig 23:287–322PubMedCrossRefGoogle Scholar
  39. Gilbert RE, Thai K, Advani SL, Cummins CL, Kepecs DM, Schroer SA, Woo M, Zhang Y (2015) SIRT1 activation ameliorates hyperglycaemia by inducing a torpor-like state in an obese mouse model of type 2 diabetes. Diabetologia 58:819–827PubMedCrossRefGoogle Scholar
  40. Girisgin AS, Kalkan E, Ergin M, Keskin F, Dundar ZD, Kebapcioglu S, Kocak S, Cander B (2015) An experimental study: does the neuroprotective effect increase when hypothermia deepens after traumatic brain injury? Iran Red Crescent Med J 17:e21233PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gu X, Wei ZZ, Espinera A, Lee JH, Ji X, Wei L, Dix TA, Yu SP (2015) Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats. Exp Neurol 267:135–142PubMedPubMedCentralCrossRefGoogle Scholar
  42. Guzman A, Garcia C, Marin AP, Tortajada A, Ruiz MT, Fernandez de Henestrosa AR, Marcos R (2008) Formation of micronucleated erythrocytes in mouse bone-marrow under conditions of hypothermia is not associated with stimulation of erythropoiesis. Mutat Res 656:8–13PubMedCrossRefGoogle Scholar
  43. Hampton M, Nelson BT, Andrews MT (2010) Circulation and metabolic rates in a natural hibernator: an integrative physiological model. Am J Physiol Regul Integr Comp Physiol 299:R1478–R1488PubMedPubMedCentralCrossRefGoogle Scholar
  44. Han Z, Liu X, Luo Y, Ji X (2015) Therapeutic hypothermia for stroke: where to go? Exp Neurol 272:67–77PubMedCrossRefGoogle Scholar
  45. Hand LE, Saer BR, Hui ST, Jinnah HA, Steinlechner S, Loudon AS, Bechtold DA (2013) Induction of the metabolic regulator Txnip in fasting-induced and natural torpor. Endocrinology 154:2081–2091PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hays GC, Webb PI, Speakman JR (1991) Arrhythmic breathing in torpid pipistrelle bats, Pipistrellus pipistrellus. Respir Physiol 85:185–192PubMedCrossRefGoogle Scholar
  47. Hedlund PB, Leopoldo M, Caccia S, Sarkisyan G, Fracasso C, Martelli G, Lacivita E, Berardi F, Perrone R (2010) LP-211 is a brain penetrant selective agonist for the serotonin 5-HT(7) receptor. Neurosci Lett 481:12–16PubMedPubMedCentralCrossRefGoogle Scholar
  48. Heller HC, Ruby NF (2004) Sleep and circadian rhythms in mammalian torpor. Annu Rev Physiol 66:275–289PubMedCrossRefGoogle Scholar
  49. Hemmen TM, Raman R, Guluma KZ, Meyer BC, Gomes JA, Cruz-Flores S, Wijman CA, Rapp KS, Grotta JC, Lyden PD (2010) Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): final results. Stroke 41:2265–2270PubMedPubMedCentralCrossRefGoogle Scholar
  50. Higuchi H, Yabuki A, Ishii-Maruhama M, Tomoyasu Y, Maeda S, Miyawaki T (2014) Hemodynamic changes by drug interaction of adrenaline with chlorpromazine. Anesth Prog 61:150–154PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hoelzl F, Cornils JS, Smith S, Moodley Y, Ruf T (2016) Telomere dynamics in free-living edible dormice (Glis glis): the impact of hibernation and food supply. J Exp Biol 219:2469–2474PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hong SY, Hagen T (2015) 2-Deoxyglucose induces the expression of thioredoxin interacting protein (TXNIP) by increasing O-GlcNAcylation—implications for targeting the Warburg effect in cancer cells. Biochem Biophys Res Commun 465:838–844PubMedCrossRefGoogle Scholar
  53. Huang FY, Huang BT, Wang PJ, Zuo ZL, Heng Y, Xia TL, Gui YY, Lv WY, Zhang C, Liao YB, Liu W, Chen M, Zhu Y (2015) The efficacy and safety of prehospital therapeutic hypothermia in patients with out-of-hospital cardiac arrest: a systematic review and meta-analysis. Resuscitation 96:170–179PubMedCrossRefGoogle Scholar
  54. Iaizzo PA, Laske TG, Harlow HJ, McClay CB, Garshelis DL (2012) Wound healing during hibernation by black bears (Ursus americanus) in the wild: elicitation of reduced scar formation. Integr Zool 7:48–60PubMedCrossRefGoogle Scholar
  55. Ilyina RY, Pasynkova OO, Ziganshina LE (2013) Predicting and managing adverse reactions of psychotropic drugs. Int J Risk Saf Med 25:95–103PubMedGoogle Scholar
  56. Iskra-Jopa J, Golembiowska K, Dziubina A, Cybulski M, Duszynska B, Chilmonczyk Z (2005) In-vivo effects of the 1,2,4-piperazine derivatives MM5 and MC1, putative 5-HT agonists, on dopamine and serotonin release in rat prefrontal cortex. J Pharm Pharmacol 57:205–211PubMedCrossRefGoogle Scholar
  57. Jessen N, Nielsen TS, Vendelbo MH, Viggers R, Stoen OG, Evans A, Frobert O (2016) Pronounced expression of the lipolytic inhibitor G0/G1 Switch Gene 2 (G0S2) in adipose tissue from brown bears (Ursus arctos) prior to hibernation. Physiol Rep 4:e12781PubMedPubMedCentralCrossRefGoogle Scholar
  58. Jin Y, Lin Y, Feng JF, Jia F, Gao G, Jiang JY (2015a) Attenuation of cell death in injured cortex after post-traumatic brain injury moderate hypothermia: possible involvement of autophagy pathway. World Neurosurg 84:420–430PubMedCrossRefGoogle Scholar
  59. Jin Y, Lin Y, Feng JF, Jia F, Gao GY, Jiang JY (2015b) Moderate hypothermia significantly decreases hippocampal cell death involving autophagy pathway after moderate traumatic brain injury. J Neurotrauma 32:1090–1100PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jorgensen PG, Arnemo J, Swenson JE, Jensen JS, Galatius S, Frobert O (2014) Low cardiac output as physiological phenomenon in hibernating, free-ranging Scandinavian brown bears (Ursus arctos)—an observational study. Cardiovasc Ultrasound 12:36PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kamine A, Shimozuru M, Shibata H, Tsubota T (2012) Changes in blood glucose and insulin responses to intravenous glucose tolerance tests and blood biochemical values in adult female Japanese black bears (Ursus thibetanus japonicus). Jpn J Vet Res 60:5–13PubMedGoogle Scholar
  62. Kansagra A, Patel S, Wilcox SR (2013) Prolonged hypothermia due to olanzapine in the setting of renal failure: a case report and review of the literature. Ther Adv Psychopharmacol 3:335–339PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kemp DE (2014) Managing the side effects associated with commonly used treatments for bipolar depression. J Affect Disord 169(Suppl 1):S34–S44PubMedCrossRefGoogle Scholar
  64. Khalifa AE (2003) Zuclopenthixol facilitates memory retrieval in rats: possible involvement of noradrenergic and serotonergic mechanisms. Pharmacol Biochem Behav 75:755–762PubMedCrossRefGoogle Scholar
  65. Kim IH, Rossi MA, Aryal DK, Racz B, Kim N, Uezu A, Wang F, Wetsel WC, Weinberg RJ, Yin H, Soderling SH (2015) Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. Nat Neurosci 18:883–891PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kiyatkin EA (2013) The hidden side of drug action: brain temperature changes induced by neuroactive drugs. Psychopharmacology 225:765–780PubMedCrossRefGoogle Scholar
  67. Kiyatkin EA, Mitchum RD Jr (2003) Fluctuations in brain temperature during sexual interaction in male rats: an approach for evaluating neural activity underlying motivated behavior. Neuroscience 119:1169–1183PubMedCrossRefGoogle Scholar
  68. Klug BJ, Brigham RM (2015) Changes to metabolism and cell physiology that enable mammalian hibernation. Springer Sci Rev 3:39–56CrossRefGoogle Scholar
  69. Kollmar R, Schellinger PD, Steigleder T, Kohrmann M, Schwab S (2009) Ice-cold saline for the induction of mild hypothermia in patients with acute ischemic stroke: a pilot study. Stroke 40:1907–1909PubMedCrossRefGoogle Scholar
  70. Krystal AD, Schopler B, Kobbe S, Williams C, Rakatondrainibe H, Yoder AD, Klopfer P (2013) The relationship of sleep with temperature and metabolic rate in a hibernating primate. PLoS One 8:e69914PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lee JH, Wei L, Gu X, Wei Z, Dix TA, Yu SP (2014) Therapeutic effects of pharmacologically induced hypothermia against traumatic brain injury in mice. J Neurotrauma 31:1417–1430PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lee JH, Wei ZZ, Cao W, Won S, Gu X, Winter M, Dix TA, Wei L, Yu SP (2016) Regulation of therapeutic hypothermia on inflammatory cytokines, microglia polarization, migration and functional recovery after ischemic stroke in mice. Neurobiol Dis 96:248–260PubMedCrossRefGoogle Scholar
  73. Leon-Espinosa G, Garcia E, Gomez-Pinedo U, Hernandez F, DeFelipe J, Avila J (2016) Decreased adult neurogenesis in hibernating Syrian hamster. Neuroscience 333:181–192PubMedCrossRefGoogle Scholar
  74. Li JD, Hu WP, Zhou QY (2012) The circadian output signals from the suprachiasmatic nuclei. Prog Brain Res 199:119–127PubMedCrossRefGoogle Scholar
  75. Li Y, Yang J, Chen MH, Wang Q, Qin MJ, Zhang T, Chen XQ, Liu BL, Wen XD (2015) Ilexgenin A inhibits endoplasmic reticulum stress and ameliorates endothelial dysfunction via suppression of TXNIP/NLRP3 inflammasome activation in an AMPK dependent manner. Pharmacol Res 99:101–115PubMedCrossRefGoogle Scholar
  76. Liu S, Chen JF (2012) Strategies for therapeutic hypometabothermia. J Exp Stroke Transl Med 5:31–42PubMedPubMedCentralCrossRefGoogle Scholar
  77. Liu S, Geng X, Forreider B, Xiao Y, Kong Q, Ding Y, Ji X (2015) Enhanced beneficial effects of mild hypothermia by phenothiazine drugs in stroke therapy. Neurol Res 37:454–460PubMedCrossRefGoogle Scholar
  78. Lopez-Munoz F, Alamo C, Cuenca E, Shen WW, Clervoy P, Rubio G (2005) History of the discovery and clinical introduction of chlorpromazine. Ann Clin Psychiatry 17:113–135PubMedCrossRefGoogle Scholar
  79. Luu BE, Biggar KK, Wu CW, Storey KB (2016) Torpor-responsive expression of novel microRNA regulating metabolism and other cellular pathways in the thirteen-lined ground squirrel, Ictidomys tridecemlineatus. FEBS Lett 590:3574–3582PubMedCrossRefGoogle Scholar
  80. Mathers KE, McFarlane SV, Zhao L, Staples JF (2016) Regulation of mitochondrial metabolism during hibernation by reversible suppression of electron transport system enzymes. J Comp Physiol B (In Press)Google Scholar
  81. Mayer SA, Kowalski RG, Presciutti M, Ostapkovich ND, McGann E, Fitzsimmons BF, Yavagal DR, Du YE, Naidech AM, Janjua NA, Claassen J, Kreiter KT, Parra A, Commichau C (2004) Clinical trial of a novel surface cooling system for fever control in neurocritical care patients. Crit Care Med 32:2508–2515PubMedCrossRefGoogle Scholar
  82. Mele M, Avolio E, Alo R, Fazzari G, Mahata SK, Canonaco M (2014) Catestatin and orexin-a neuronal signals alter feeding habits in relation to hibernating states. Neuroscience 269:331–342PubMedCrossRefGoogle Scholar
  83. Menegatti R, Cunha AC, Ferreira VF, Perreira EF, El Nabawi A, Eldefrawi AT, Albuquerque EX, Neves G, Rates SM, Fraga CA, Barreiro EJ (2003) Design, synthesis and pharmacological profile of novel dopamine D2 receptor ligands. Bioorg Med Chem 11:4807–4813PubMedCrossRefGoogle Scholar
  84. Mikhailova A, Mack J, Vitagliano N, Hamilton JS, Horowitz JM, Horwitz BA (2016) Recovery of Syrian hamster hippocampal signaling following its depression during oxygen-glucose deprivation is enhanced by cold temperatures and by hibernation. Neurosci Lett 621:98–103PubMedCrossRefGoogle Scholar
  85. Minor T, Paul A (2013) Hypothermic reconditioning in organ transplantation. Curr Opin Organ Transplant 18:161–167PubMedCrossRefGoogle Scholar
  86. Nassar A, Sharon-Granit Y, Azab AN (2016) Psychotropic drugs attenuate lipopolysaccharide-induced hypothermia by altering hypothalamic levels of inflammatory mediators in rats. Neurosci Lett 626:59–67PubMedCrossRefGoogle Scholar
  87. Naumenko VS, Tkachev SE, Kulikov AV, Semenova TP, Amerhanov ZG, Smirnova NP, Popova NK (2008) The brain 5-HT1A receptor gene expression in hibernation. Genes Brain Behav 7:300–305PubMedCrossRefGoogle Scholar
  88. Nelson CJ, Otis JP, Carey HV (2010) Global analysis of circulating metabolites in hibernating ground squirrels. Comp Biochem Physiol Part D Genomics Proteomics 5:265–273PubMedCrossRefGoogle Scholar
  89. Nelson OL, Robbins CT (2015) Cardiovascular function in large to small hibernators: bears to ground squirrels. J Comp Physiol B 185:265–279PubMedCrossRefGoogle Scholar
  90. Neves G, Antonio CB, Betti AH, Pranke MA, Fraga CA, Barreiro EJ, Noel F, Rates SM (2013) New insights into pharmacological profile of LASSBio-579, a multi-target N-phenylpiperazine derivative active on animal models of schizophrenia. Behav Brain Res 237:86–95PubMedCrossRefGoogle Scholar
  91. Neves G, Kliemann M, Betti AH, Conrado DJ, Tasso L, Fraga CA, Barreiro EJ, Teresa DC, Rates SM (2008) Serotonergic neurotransmission mediates hypothermia induced by the N-phenylpiperazine antipsychotic prototypes LASSBio-579 and LASSBio-581. Pharmacol Biochem Behav 89:23–30PubMedCrossRefGoogle Scholar
  92. Ootsuka Y, Heidbreder CA, Hagan JJ, Blessing WW (2007) Dopamine D2 receptor stimulation inhibits cold-initiated thermogenesis in brown adipose tissue in conscious rats. Neuroscience 147:127–135PubMedCrossRefGoogle Scholar
  93. Otto KA (2015) Therapeutic hypothermia applicable to cardiac surgery. Vet Anaesth Analg 42:559–569PubMedCrossRefGoogle Scholar
  94. Ozdemir E, Bagcivan I, Gursoy S (2013) Role of D(1)/D(2) dopamin receptors antagonist perphenazine in morphine analgesia and tolerance in rats. Bosn J Basic Med Sci 13:119–125PubMedPubMedCentralGoogle Scholar
  95. Polderman KH, Herold I (2009) Therapeutic hypothermia and controlled normothermia in the intensive care unit: practical considerations, side effects, and cooling methods. Crit Care Med 37:1101–1120PubMedCrossRefGoogle Scholar
  96. Polderman KH, Rijnsburger ER, Peerdeman SM, Girbes AR (2005) Induction of hypothermia in patients with various types of neurologic injury with use of large volumes of ice-cold intravenous fluid. Crit Care Med 33:2744–2751PubMedCrossRefGoogle Scholar
  97. Popov VI, Kraev IV, Ignat'ev DA, Stewart MG (2011) Suspension of mitotic activity in dentate gyrus of the hibernating ground squirrel. Neural Plast 2011:867525PubMedPubMedCentralGoogle Scholar
  98. Quinones QJ, Zhang Z, Ma Q, Smith MP, Soderblom E, Moseley MA, Bain J, Newgard CB, Muehlbauer MJ, Hirschey M, Drew KL, Barnes BM, Podgoreanu MV (2016) Proteomic profiling reveals adaptive responses to surgical myocardial ischemia-reperfusion in hibernating Arctic ground squirrels compared to rats. Anesthesiology 124:1296–1310PubMedCrossRefGoogle Scholar
  99. Rani S, Kumar V (2014) Photoperiodic regulation of seasonal reproduction in higher vertebrates. Indian J Exp Biol 52:413–419PubMedGoogle Scholar
  100. Rathi AK, Syed R, Shin HS, Patel RV (2016) Piperazine derivatives for therapeutic use: a patent review (2010-present). Expert Opin Ther Pat 26:777–797PubMedCrossRefGoogle Scholar
  101. Revsbech IG, Malte H, Frobert O, Evans A, Blanc S, Josefsson J, Fago A (2013) Decrease in the red cell cofactor 2,3-diphosphoglycerate increases hemoglobin oxygen affinity in the hibernating brown bear Ursus arctos. Am J Physiol Regul Integr Comp Physiol 304:R43–R49PubMedCrossRefGoogle Scholar
  102. Richard D (2015) Cognitive and autonomic determinants of energy homeostasis in obesity. Nat Rev Endocrinol 11:489–501PubMedCrossRefGoogle Scholar
  103. Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 5:34–41PubMedCrossRefGoogle Scholar
  104. Sallmen T, Lozada AF, Anichtchik OV, Beckman AL, Leurs R, Panula P (2003) Changes in hippocampal histamine receptors across the hibernation cycle in ground squirrels. Hippocampus 13:745–754PubMedCrossRefGoogle Scholar
  105. Schmidt MH (2014) The energy allocation function of sleep: a unifying theory of sleep, torpor, and continuous wakefulness. Neurosci Biobehav Rev 47:122–153PubMedCrossRefGoogle Scholar
  106. Schreiber R, Newman-Tancredi A (2014) Improving cognition in schizophrenia with antipsychotics that elicit neurogenesis through 5-HT(1A) receptor activation. Neurobiol Learn Mem 110:72–80PubMedCrossRefGoogle Scholar
  107. Schwartz C, Hampton M, Andrews MT (2013) Seasonal and regional differences in gene expression in the brain of a hibernating mammal. PLoS One 8:e58427PubMedPubMedCentralCrossRefGoogle Scholar
  108. Schwartz C, Hampton M, Andrews MT (2015) Hypothalamic gene expression underlying pre-hibernation satiety. Genes Brain Behav 14:310–318PubMedPubMedCentralCrossRefGoogle Scholar
  109. Secor SM, Carey HV (2016) Integrative physiology of fasting. Compr Physiol 6:773–825PubMedCrossRefGoogle Scholar
  110. Seeman P, Tallerico T (1998) Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors. Mol Psychiatry 3:123–134PubMedCrossRefGoogle Scholar
  111. Shayegan DK, Stahl SM (2004) Atypical antipsychotics: matching receptor profile to individual patient's clinical profile. CNS Spectr 9:6–14PubMedCrossRefGoogle Scholar
  112. Shortall SE, Spicer CH, Ebling FJ, Green AR, Fone KC, King MV (2016) Contribution of serotonin and dopamine to changes in core body temperature and locomotor activity in rats following repeated administration of mephedrone. Addict Biol 21:1127–1139PubMedCrossRefGoogle Scholar
  113. Smirnov MS, Kiyatkin EA (2008) Fluctuations in central and peripheral temperatures associated with feeding behavior in rats. Am J Physiol Regul Integr Comp Physiol 295:R1415–R1424PubMedPubMedCentralCrossRefGoogle Scholar
  114. Soreide K (2014) Clinical and translational aspects of hypothermia in major trauma patients: from pathophysiology to prevention, prognosis and potential preservation. Injury 45:647–654PubMedCrossRefGoogle Scholar
  115. Spivak B, Mozes T, Mester R, Kodelik M, Weizman A (2001) Zuclopenthixol treatment of behavioral disturbances in mentally retarded children and adolescents: an open-label study. J Child Adolesc Psychopharmacol 11:279–284PubMedCrossRefGoogle Scholar
  116. Staples JF (2016) Metabolic flexibility: hibernation, torpor, and estivation. Compr Physiol 6:737–771PubMedCrossRefGoogle Scholar
  117. Sun H, Tang Y, Li L, Guan X, Wang D (2015a) Effects of local hypothermia on neuronal cell apoptosis after intracerebral hemorrhage in rats. J Nutr Health Aging 19:291–298PubMedCrossRefGoogle Scholar
  118. Sun HY, Hu YJ, Zhao XY, Zhong Y, Zeng LL, Chen XB, Yuan J, Wu J, Sun Y, Kong W, Kong WJ (2015b) Age-related changes in mitochondrial antioxidant enzyme Trx2 and TXNIP-Trx2-ASK1 signal pathways in the auditory cortex of a mimetic aging rat model: changes to Trx2 in the auditory cortex. FEBS J 282:2758–2774PubMedCrossRefGoogle Scholar
  119. Suzuki H, Gen K, Inoue Y (2013) Comparison of the anti-dopamine D(2) and anti-serotonin 5-HT(2A) activities of chlorpromazine, bromperidol, haloperidol and second-generation antipsychotics parent compounds and metabolites thereof. J Psychopharmacol 27:396–400PubMedCrossRefGoogle Scholar
  120. Swoap SJ, Rathvon M, Gutilla M (2007) AMP does not induce torpor. Am J Physiol Regul Integr Comp Physiol 293:R468–R473PubMedCrossRefGoogle Scholar
  121. Takeuchi H, Fervaha G, Uchida H, Suzuki T, Bies RR, Gronte D, Remington G (2014) Impact of once- versus twice-daily perphenazine dosing on clinical outcomes: an analysis of the CATIE data. J Clin Psychiatry 75:506–511PubMedCrossRefGoogle Scholar
  122. Toien O, Blake J, Barnes BM (2015) Thermoregulation and energetics in hibernating black bears: metabolic rate and the mystery of multi-day body temperature cycles. J Comp Physiol B 185:447–461PubMedCrossRefGoogle Scholar
  123. Toien O, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331:906–909PubMedCrossRefGoogle Scholar
  124. Tupone D, Madden CJ, Morrison SF (2013) Central activation of the A1 adenosine receptor (A1AR) induces a hypothermic, torpor-like state in the rat. J Neurosci 33:14512–14525PubMedPubMedCentralCrossRefGoogle Scholar
  125. van Breukelen F, Martin SL (2015) The hibernation continuum: physiological and molecular aspects of metabolic plasticity in mammals. Physiology 30:237–281Google Scholar
  126. Vinkers CH, Klanker M, Groenink L, Korte SM, Cook JM, Van Linn ML, Hopkins SC, Olivier B (2009) Dissociating anxiolytic and sedative effects of GABAAergic drugs using temperature and locomotor responses to acute stress. Psychopharmacology 204:299–311PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wang HS, Han JS (2014) Research progress on combat trauma treatment in cold regions. Mil Med Res 1:8PubMedPubMedCentralCrossRefGoogle Scholar
  128. Wei S, Sun J, Li J, Wang L, Hall CL, Dix TA, Mohamad O, Wei L, Yu SP (2013) Acute and delayed protective effects of pharmacologically induced hypothermia in an intracerebral hemorrhage stroke model of mice. Neuroscience 252:489–500PubMedPubMedCentralCrossRefGoogle Scholar
  129. Wojda SJ, McGee-Lawrence ME, Gridley RA, Auger J, Black HL, Donahue SW (2012) Yellow-bellied marmots (Marmota flaviventris) preserve bone strength and microstructure during hibernation. Bone 50:182–188PubMedCrossRefGoogle Scholar
  130. Wood T, Thoresen M (2015) Physiological responses to hypothermia. Semin Fetal Neonatal Med 20:87–96PubMedCrossRefGoogle Scholar
  131. Wu CW, Biggar KK, Luu BE, Szereszewski KE, Storey KB (2016) Analysis of microRNA expression during the torpor-arousal cycle of a mammalian hibernator, the 13-lined ground squirrel. Physiol Genomics 48:388–396PubMedCrossRefGoogle Scholar
  132. Wu J, Xu X, Li Y, Kou J, Huang F, Liu B, Liu K (2014) Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells. Eur J Pharmacol 745:59–68PubMedCrossRefGoogle Scholar
  133. Xu Y, Shao C, Fedorov VB, Goropashnaya AV, Barnes BM, Yan J (2013) Molecular signatures of mammalian hibernation: comparisons with alternative phenotypes. BMC Genomics 14:567PubMedPubMedCentralCrossRefGoogle Scholar
  134. Yehl JL, Sheyner I, Fasnacht KS, Stewart JT (2015) A case of tardive dyskinesia in the last weeks of life. J Pain Palliat Care Pharmacother 29:144–147PubMedCrossRefGoogle Scholar
  135. Yin Q, Ge H, Liao CC, Liu D, Zhang S, Pan YH (2016) Antioxidant defenses in the brains of bats during hibernation. PLoS One 11:e0152135PubMedPubMedCentralCrossRefGoogle Scholar
  136. Zaretsky DV, Hunt JL, Zaretskaia MV, DiMicco JA (2006) Microinjection of prostaglandin E2 and muscimol into the preoptic area in conscious rats: comparison of effects on plasma adrenocorticotrophic hormone (ACTH), body temperature, locomotor activity, and cardiovascular function. Neurosci Lett 397:291–296PubMedCrossRefGoogle Scholar
  137. Zhang M, Wang H, Zhao J, Chen C, Leak RK, Xu Y, Vosler P, Chen J, Gao Y, Zhang F (2013) Drug-induced hypothermia in stroke models: does it always protect? CNS Neurol Disord Drug Targets 12:371–380PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zhang X, Zhang JH, Chen XY, Hu QH, Wang MX, Jin R, Zhang QY, Wang W, Wang R, Kang LL, Li JS, Li M, Pan Y, Huang JJ, Kong LD (2015) Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxid Redox Signal 22:848–870PubMedPubMedCentralCrossRefGoogle Scholar
  139. Zhang Y, Tessier SN, Storey KB (2016) Inhibition of skeletal muscle atrophy during torpor in ground squirrels occurs through downregulation of MyoG and inactivation of Foxo4. Cryobiology 73:112–119PubMedCrossRefGoogle Scholar
  140. Zhao Y, Li Q, Zhao W, Li J, Sun Y, Liu K, Liu B, Zhang N (2015a) Astragaloside IV and cycloastragenol are equally effective in inhibition of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation in the endothelium. J Ethnopharmacol 169:210–218PubMedCrossRefGoogle Scholar
  141. Zhao Y, Li X, Tang S (2015b) Retrospective analysis of the relationship between elevated plasma levels of TXNIP and carotid intima-media thickness in subjects with impaired glucose tolerance and early Type 2 diabetes mellitus. Diabetes Res Clin Pract 109:372–377PubMedCrossRefGoogle Scholar
  142. Zhao YC, Zhu J, Song GY, Li XS (2015c) Relationship between thioredoxin-interacting protein (TXNIP) and islet beta-cell dysfunction in patients with impaired glucose tolerance and hypertriglyceridemia. Int J Clin Exp Med 8:4363–4368PubMedPubMedCentralGoogle Scholar
  143. Zweifler RM, Voorhees ME, Mahmood MA, Alday DD (2003) Induction and maintenance of mild hypothermia by surface cooling in non-intubated subjects. J Stroke Cerebrovasc Dis 12:237–243PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yury S. Tarahovsky
    • 1
    • 2
    Email author
  • Irina S. Fadeeva
    • 1
    • 2
  • Natalia P. Komelina
    • 1
  • Maxim O. Khrenov
    • 1
  • Nadezhda M. Zakharova
    • 1
  1. 1.Institute of Cell Biophysics RASPushchinoRussian Federation
  2. 2.Institute of Theoretical and Experimental Biophysics RASPushchinoRussian Federation

Personalised recommendations