Advertisement

Psychopharmacology

, Volume 234, Issue 2, pp 281–291 | Cite as

Cytisine inhibits the protective activity of various classical and novel antiepileptic drugs against 6 Hz-induced psychomotor seizures in mice

  • Piotr TutkaEmail author
  • Maria W. Kondrat-Wróbel
  • Katarzyna Zaluska
  • Dorota Żółkowska
  • Magdalena Florek-Łuszczki
  • Jarogniew J. Łuszczki
Original Investigation

Abstract

Background

Cytisine (CYT) is a partial agonist of brain α4β2 nicotinic acetylcholine receptors widely used in Central/Eastern Europe for smoking cessation.

Objectives

This study evaluated the effect of CYT on the ability of classical and novel antiepileptic drugs to prevent seizures evoked by the 6-Hz test, a model of psychomotor seizures in mice thought as a model of drug-resistant seizures.

Results

CYT administered intraperitoneally (i.p.) in a dose of 2 mg kg−1 significantly inhibited the anticonvulsant activity of lacosamide, levetiracetam, and pregabalin, increasing their median effective doses 50 (ED50) values from 6.88 to 10.52 mg kg−1 (P < 0.05) for lacosamide, from 22.08 to 38.26 mg kg−1 (P < 0.05) for levetiracetam, and from 40.48 to 64.61 mg kg−1 (P < 0.01) for pregabalin, respectively. There were no significant changes in total brain concentrations of lacosamide, levetiracetam, and pregabalin following CYT i.p. administration. CYT administered in a dose of 2 mg kg−1 failed to change the protective action of clobazam, clonazepam, phenobarbital, tiagabine, and valproate in the 6-Hz test. Neither CYT (2 mg kg−1) alone nor its combination with the anticonvulsant drugs (at their ED50 values from the 6-Hz test) affected motor coordination; skeletal muscular strength and long-term memory, as determined in the chimney; and grip strength and passive avoidance tests, respectively.

Conclusion

CYT-evoked alterations in the protection provided by some antiepileptic drugs against seizures can be of serious concern for epileptic smokers, who might demonstrate therapeutic failure to lacosamide, levetiracetam, and pregabalin, resulting in possible breakthrough seizure attacks.

Keywords

Cytisine Epilepsy Psychomotor seizures Smoking cessation 

Notes

Acknowledgments

This study was supported by a research grant from the University of Rzeszów (Rzeszów, Poland) (DS/2014, DS/2015). The authors express their thanks to Dr. G. Raszewski (Institute of Rural Health, Lublin, Poland) for the skillful determination of the brain concentrations of antiepileptic drugs.

Compliance with ethical standards

The experimental procedures listed were approved by the Second Local Ethics Committee at the University of Life Sciences in Lublin (license nos. 88/2012 and 61/2014) and conformed to the Guide for the Care and Use of Laboratory Animals.

Conflict of interest

Prof. P Tutka has undertaken paid consultancy for Aflofarm, a manufacturer of CYT. Prof. JJ Luszczki has been involved in the design and development of new antiepileptics and CNS drugs. Additionally, within the last 5 years, he has received an unrestricted research grant from GlaxoSmithKline (Brentford, UK). The remaining authors have no conflicts of interest to disclose.

References

  1. Adkins JC, Noble S (1998) Tiagabine. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the management of epilepsy. Drugs 55:437–460CrossRefPubMedGoogle Scholar
  2. Anthonisen NR, Skeans MA, Wise RA, Manfreda J, Kanner RE, Connett JE (2005) The effects of smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann Intern Med 142:233–239CrossRefPubMedGoogle Scholar
  3. Aveyard P, West R (2013) Cytisine and the failure to market and regulate for human health. Thorax 68:989CrossRefPubMedGoogle Scholar
  4. Barton ME, Klein BD, Wolf HH, White HS (2001) Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res 47:217–227CrossRefPubMedGoogle Scholar
  5. Benowitz NL (2008) Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin Pharmacol Ther 83:531–541CrossRefPubMedGoogle Scholar
  6. Boissier JR, Tardy J, Diverres JC (1960) Une nouvelle methode simple pour explorer l’action «tranquilisante»: le test de la cheminee. Med Exp (Basel) 3:81–84CrossRefGoogle Scholar
  7. Brown WC, Schiffman DO, Swinyard EA, Goodman LS (1953) Comparative assay of antiepileptic drugs by psychomotor seizure test and minimal electroshock threshold test. J Pharmacol Exp Ther 107:273–283PubMedGoogle Scholar
  8. Cadart M, Marchand S, Pariat C, Bouquet S, Couet W (2002) Ignoring pharmacokinetics may lead to isoboles misinterpretation: illustration with the norfloxacin-theophylline convulsant interaction in rats. Pharm Res 19:209–214CrossRefPubMedGoogle Scholar
  9. Caulfield MP, Higgins GA (1983) Mediation of nicotine-induced convulsions by central nicotinic receptors of the ‘C6’ type. Neuropharmacology 22:347–351CrossRefPubMedGoogle Scholar
  10. Cawello W (2015) Clinical pharmacokinetic and pharmacodynamic profile of lacosamide. Clin Pharmacokinet 54:901–914CrossRefPubMedGoogle Scholar
  11. Chavez-Noriega LE, Crona JH, Washburn MS, Urrutia A, Elliott KJ, Johnson EC (1997) Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors h alpha 2 beta 2, h alpha 2 beta 4, h alpha 3 beta 2, h alpha 3 beta 4, h alpha 4 beta 2, h alpha 4 beta 4 and h alpha 7 expressed in Xenopus oocytes. J Pharmacol Exp Ther 280:346–356PubMedGoogle Scholar
  12. Crooks PA, Bardo MT, Dwoskin LP (2014) Nicotinic receptor antagonists as treatments for nicotine abuse. Adv Pharmacol 49:513–551CrossRefGoogle Scholar
  13. Curia G, Biagini G, Perucca E, Avoli M (2009) Lacosamide: a new approach to target voltage-gated sodium currents in epileptic disorders. CNS Drugs 23:555–568CrossRefPubMedPubMedCentralGoogle Scholar
  14. Damaj MI, Glassco W, Dukat M, Martin BR (1999) Pharmacological characterization of nicotine-induced seizures in mice. J Pharmacol Exp Ther 291:1284–1291PubMedGoogle Scholar
  15. De Fusco M, Becchetti A, Patrignani A, Annesi G, Gambardella A, Quattrone A et al (2000) The nicotinic receptor beta 2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat Genet 26:275–276CrossRefPubMedGoogle Scholar
  16. Etter JF (2006) Cytisine for smoking cessation, a literature review and a meta-analysis. Arch Intern Med 166:1553–1559CrossRefPubMedGoogle Scholar
  17. Florek-Luszczki M, Wlaz A, Kondrat-Wrobel MW, Tutka P, Luszczki JJ (2014a) Effects of WIN 55, 212-2 (a non-selective cannabinoid CB1 and CB 2 receptor agonist) on the protective action of various classical antiepileptic drugs in the mouse 6 Hz psychomotor seizure model. J Neural Transm (Vienna) 121:707–715CrossRefGoogle Scholar
  18. Florek-Luszczki M, Wlaz A, Luszczki JJ (2014b) Interactions of levetiracetam with carbamazepine, phenytoin, topiramate and vigabatrin in the mouse 6 Hz psychomotor seizure model—a type II isobolographic analysis. Eur J Pharmacol 723:410–418CrossRefPubMedGoogle Scholar
  19. Florek-Luszczki M, Wlaz A, Zagaja M, Andres-Mach M, Kondrat-Wrobel MW, Luszczki JJ (2015) Effects of WIN 55, 212-2 (a synthetic cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant activity of various novel antiepileptic drugs against 6 Hz-induced psychomotor seizures in mice. Pharmacol Biochem Behav 130:53–58CrossRefPubMedGoogle Scholar
  20. Giordano C, Vinet J, Curia G, Biagini G (2015) Repeated 6-Hz corneal stimulation progressively increases FosB/ΔFosB levels in the lateral amygdala and induces seizure generalization to the hippocampus. PLoS One 10:e0141221CrossRefPubMedPubMedCentralGoogle Scholar
  21. Greenaway C, Ratnaraj N, Sander JW, Patsalos PN (2010) A high-performance liquid chromatography assay to monitor the new antiepileptic drug lacosamide in patients with epilepsy. Ther Drug Monit 32:448–452CrossRefPubMedGoogle Scholar
  22. Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396CrossRefPubMedGoogle Scholar
  23. Hajek P, McRobbie H, Myers K (2013) Efficacy of cytisine in helping smokers quit: systemic review and metaanalysis. Thorax 68:1037–1042CrossRefPubMedGoogle Scholar
  24. Hoda JC, Gu W, Friedli M, Phillips HA, Bertrand S, Antonarakis SE et al (2008) Human nocturnal frontal lobe epilepsy: pharmocogenomic profiles of pathogenic nicotinic acetylcholine receptor beta-subunit mutations outside the ion channel pore. Mol Pharmacol 74:379–391CrossRefPubMedGoogle Scholar
  25. Kwan P, Brodie MJ (2004) Phenobarbital for the treatment of epilepsy in the 21st century: a critical review. Epilepsia 45:1141–1149CrossRefPubMedGoogle Scholar
  26. Leaviss J, Sullivan W, Ren S, Everson-Hock E, Stevenson M, Stevens JW et al (2014) What is the clinical effectiveness and cost-effectiveness of cytisine compared with varenicline for smoking cessation? A systematic review and economic evaluation Health Technol Assess 18:1–120PubMedGoogle Scholar
  27. Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113PubMedGoogle Scholar
  28. Löscher W (1999) Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Prog Neurobiol 58:31–59CrossRefPubMedGoogle Scholar
  29. Luszczki J, Swiader M, Czuczwar M, Kis J, Czuczwar SJ (2003) Interactions of tiagabine with some antiepileptics in the maximal electroshock in mice. Pharmacol Biochem Behav 75:319–327CrossRefPubMedGoogle Scholar
  30. Luszczki JJ, Wlaz A, Karwan S, Florek-Luszczki M, Czuczwar SJ (2013) Effects of WIN 55, 212-2mesylate on the anticonvulsant action of lamotrigine, oxcarbazepine, pregabalin and topiramate against maximal electroshock-induced seizures in mice. Eur J Pharmacol 720:247–254CrossRefPubMedGoogle Scholar
  31. Lyseng-Williamson KA (2011) Spotlight on levetiracetam in epilepsy. CNS Drugs 25:901–905CrossRefPubMedGoogle Scholar
  32. McGehee DS, Heath MJ, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692–1696CrossRefPubMedGoogle Scholar
  33. Meyer OA, Tilson HA, Byrd WC, Riley MT (1979) A method for the routine assessment of fore- and hindlimb grip strength of rats and mice. Neurobehav Toxicol 1:233–236PubMedGoogle Scholar
  34. Patsalos PN (2005) Properties of antiepileptic drugs in the treatment of idiopathic generalized epilepsies. Epilepsia 46(Suppl 9):140–148CrossRefPubMedGoogle Scholar
  35. Perucca E (2002) Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs 16:695–714CrossRefPubMedGoogle Scholar
  36. Prochaska JJ, Das S, Benowitz NL (2013) Cytisine, the world’s oldest smoking cessation aid. BMJ 347:5198CrossRefGoogle Scholar
  37. Puligheddu M, Pillolla G, Melis M, Lecca S, Marrosu F, De Montis MG et al (2013) PPAR-alpha agonists as novel antiepileptic drugs: preclinical findings. PLoS One 8:e64541. doi: 10.1371/journal.pone.0064541 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ratnaraj N, Doheny HC, Patsalos PN (1996) A micromethod for the determination of the new antiepileptic drug levetiracetam (ucb lo59) in serum or plasma by high performance liquid chromatography. Ther. Drug Monit 18:154–157CrossRefPubMedGoogle Scholar
  39. Reagan-Shaw S, Nihal M, Ahmad N (2007) Dose translation from animal to human studies revisited. The FASEB Journal 22 (3):659–661Google Scholar
  40. Rowley NM, White HS (2010) Comparative anticonvulsant efficacy in the corneal kindled mouse model of partial epilepsy: correlation with other seizure and epilepsy models. Epilepsy Res 92:163–169CrossRefPubMedGoogle Scholar
  41. Sankar R (2012) GABA(A) receptor physiology and its relationship to the mechanism of action of the 1,5-benzodiazepine clobazam. CNS Drugs 26:229–244CrossRefPubMedGoogle Scholar
  42. Schousboe A, Madsen KK, Barker-Haliski ML, White HS (2014) The GABA synapse as a target for antiepileptic drugs: a historical overview focused on GABA transporters. Neurochem Res 39:1980–1987CrossRefPubMedGoogle Scholar
  43. Schulze-Bonhage A (2013) Pharmacokinetic and pharmacodynamic profile of pregabalin and its role in the treatment of epilepsy. Expert Opin Drug Metab Toxicol 9:105–115CrossRefPubMedGoogle Scholar
  44. Sood N, Hota D, Sahai AK, Chakrabarti A (2011) Nicotine reversal of anticonvulsant action of topiramate in kainic acid-induced seizure model in mice. Nicotine Tob Res 13:1084–1091CrossRefPubMedGoogle Scholar
  45. Stitzel JA, Lu Y, Jimenez M, Tritto T, Collins AC (2000) Genetic and pharmacological strategies identify a behavioral function of neuronal nicotinic receptors. Behav Brain Res 113:57–64CrossRefPubMedGoogle Scholar
  46. Stoyanov S, Yanachkova M (1972) Tabex – therapeutic efficacy and tolerance (in Bulgarian). Savr Med 23:30–33Google Scholar
  47. Suresh HS, Chakraborty A, Virupakshaiah A, Kumar N (2015) Efficacy and safety of levetiracetam and carbamazepine as monotherapy in partial seizures. Epilepsy Res Treat 2015:415082PubMedPubMedCentralGoogle Scholar
  48. Sutor B, Zolles G (2001) Neuronal nicotinic acetylcholine receptors and autosomal dominant nocturnal frontal lobe epilepsy: a critical review. Pflugers Arch 442:642–651CrossRefPubMedGoogle Scholar
  49. Tutka P, Zatoński W (2006) Cytisine for the treatment of nicotine addiction: from a molecule to therapeutic efficacy. Pharmacol Rep 58:777–798PubMedGoogle Scholar
  50. Tutka P (2008) Nicotinic receptor partial agonists as novel compounds for the treatment of smoking cessation. Expert Opin Investig Drugs 17:1473–1485CrossRefPubMedGoogle Scholar
  51. Tutka P, Mróz T, Bednarski J, Styk A, Ognik J, Mosiewicz J et al (2013) Cytisine inhibits the anticonvulsant activity of phenytoin and lamotrigine in mice. Pharmacol Rep 65:195–200CrossRefPubMedGoogle Scholar
  52. Tutka, P., Wahl, H., Dąbrowa, M., Błażej, J., 2016. Cytisine as an effective treatment for nicotine addiction in Poland: 50 years of experience. In: 2016 Annual Meeting of the Society for Research on Nicotine and Tobacco. Chicago, 125.Google Scholar
  53. Venault P, Chaputhier G, De Carvalho LP, Simiand J, Morre M, Dodd RH et al (1986) Benzodiazepines impair and betacarbolines enhance performance in learning and memory task. Nature 321:864–866CrossRefPubMedGoogle Scholar
  54. Vinnikov D, Brimkulov N, Burjubaeva A (2008) A double-blind, randomised, placebo-controlled trial of cytisine for smoking cessation in medium-dependent workers. J Smok Cessat 3:57–62CrossRefGoogle Scholar
  55. Walker N, Howe C, Glover M, McRobbie H, Barnes J, Nosa V et al (2014) Cytisine versus nicotine for smoking cessation. N Engl J Med 371:2353–2362CrossRefPubMedGoogle Scholar
  56. Walker N, Bullen C, Barnes J, McRobbie H, Tutka P, Raw M et al (2016) Getting cytisine licensed for use worldwide: a call to action. Addiction. doi: 10.1111/add.13464 PubMedGoogle Scholar
  57. West R, Zatoński W, Cedzyńska M, Lewandowska D, Pazik J, Aveyard P et al (2011) Placebo-controlled trial of cytisine for smoking cessation. N Engl J Med 365:1193–1200CrossRefPubMedGoogle Scholar
  58. WHO Report on the Global Tobacco Epidemic, 2013, 12. http://apps.who.int/iris/bitstream/10665/85380/1/9789241505871_eng.pdf?ua=1 [last accessed 10 February 2016].
  59. Wojda E, Wlaz A, Patsalos PN, Luszczki JJ (2009) Isobolographic characterization of interactions of levetiracetam with the various antiepileptic drugs in the mouse 6 Hz psychomotor seizure model. Epilepsy Res 86:163–174CrossRefPubMedGoogle Scholar
  60. Xi ZX (2010) Preclinical pharmacology, efficacy and safety of varenicline in smoking cessation and clinical utility in high risk patients. Drug Health Patient Saf 2010:39–48Google Scholar
  61. Zatoński W, Cedzyńska M, Tutka P, West R (2006) An uncontrolled trial of cytisine (Tabex) for smoking cessation. Tob Control 15:481–484CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zatoński W, Sulkowska U, Przewoźniak K, Zatoński M (2014) Malignant cancer epidemiology in Poland. In: Potrykowska A, Strzelecki Z, Szymborski J, Witkowski J (eds) Cancer incidence and mortality versus the demographic situation in Poland. Governmental Population Council, Warsaw, pp. 30–49 (In Polish)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Piotr Tutka
    • 1
    • 2
    Email author
  • Maria W. Kondrat-Wróbel
    • 3
  • Katarzyna Zaluska
    • 3
  • Dorota Żółkowska
    • 4
  • Magdalena Florek-Łuszczki
    • 5
  • Jarogniew J. Łuszczki
    • 3
    • 6
  1. 1.Department of PharmacologyUniversity of RzeszówRzeszówPoland
  2. 2.Centre for Innovative Research in Medical and Natural SciencesUniversity of RzeszówRzeszówPoland
  3. 3.Department of PathophysiologyMedical University of LublinLublinPoland
  4. 4.Department of Neurology, School of MedicineUniversity of California–DavisSacramentoUSA
  5. 5.Centre of Public Health and Health PromotionInstitute of Rural HealthLublinPoland
  6. 6.Isobolographic Analysis LaboratoryInstitute of Rural HealthLublinPoland

Personalised recommendations