Advertisement

Psychopharmacology

, Volume 233, Issue 17, pp 3259–3267 | Cite as

A prospective, longitudinal study of platelet serotonin and plasma brain-derived neurotrophic factor concentrations in major depression: effects of vortioxetine treatment

  • Marina Sagud
  • Matea Nikolac Perkovic
  • Bjanka Vuksan-Cusa
  • Anja Maravic
  • Dubravka Svob Strac
  • Alma Mihaljevic Peles
  • Maja Zivkovic
  • Zorana Kusevic
  • Nela Pivac
Original Investigation

Abstract

Background

Various antidepressants occupy brain serotonin transporter (SERT), decrease platelet serotonin (5-HT) concentration, and normalize reduced plasma brain-derived neurotrophic factor (BDNF) concentrations in depressed patients. Vortioxetine is a recently introduced antidepressant with a multimodal mechanism of action. In addition to SERT inhibition, vortioxetine acts via different 5-HT receptors. To further elucidate its mechanism of action, we have investigated the effects of vortioxetine on platelet 5-HT and plasma BDNF concentrations in patients with major depression.

Methods

Platelet 5-HT and plasma BDNF concentrations were determined in 44 healthy subjects at baseline and in 44 depressed patients before and after 4 weeks of treatment with vortioxetine (5–15 mg daily). Platelet 5-HT concentration was determined using the ortho-phthalaldehyde-enhanced fluorometric method, and plasma BDNF concentration using a commercial enzyme-linked immunosorbent assay (Quantikine ELISA, R&D Systems).

Results

At baseline, platelet 5-HT concentrations did not differ between depressed and control subjects, but plasma BDNF values were lower (p = 0.011; ω = 0.80) in depressed patients than in healthy subjects. Vortioxetine treatment significantly (p < 0.0001; ω = 0.80) decreased platelet 5-HT concentration and significantly (p = 0.004; ω = 0.80) increased plasma BDNF concentration in depressed patients compared to their baseline values. Age, gender, and smoking were not significantly associated with platelet 5-HT and plasma BDNF concentrations.

Conclusion

Despite a novel mechanism of action, vortioxetine shares some common effects with other antidepressants. This study is the first to show that, in addition to clinical improvement, 4 weeks of treatment with vortioxetine (5–15 mg daily), decreased platelet 5-HT and increased plasma BDNF concentrations in depressed patients.

Keywords

Antidepressants Depression Plasma BDNF Platelet serotonin Vortioxetine 

Notes

Acknowledgments

This study was supported by the University of Zagreb, Project Code: BM126, and the Croatian Psychiatric Association. The authors thank Marin Kirigin, MD, for editing the English language.

Compliance with ethical standards

Study procedures were approved by the local Ethics Committees. Informed consent was obtained from all participants. All procedures were in accordance with the ethical standards laid out in Helsinki Declaration of 1975 (as revised in 1983).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Areberg J, Luntang-Jensen M, Søgaard B, Nilausen DØ (2012) Occupancy of the serotonin transporter after administration of Lu AA21004 and its relation to plasma concentration in healthy subjects. Basic Clin Pharmacol Toxicol 110:401–404CrossRefPubMedGoogle Scholar
  2. Aydemir C, Yalcin ES, Aksaray S, Kisa C, Yildirim SG, Uzbay T, Goka E (2006) Brain-derived neurotrophic factor (BDNF) changes in the serum of depressed women. Progr Neuropsychopharmacol Biol Psychiatry 30:1256–1260CrossRefGoogle Scholar
  3. Baek JH, Kang ES, Fava M, Mischoulon D, Nierenberg AA, Lee D, Heo JY, Jeon HJ (2014) Thyroid stimulating hormone and serum, plasma, and platelet brain-derived neurotrophic factor during a 3-month follow-up in patients with major depressive disorder. J Affect Disord 169:112–117CrossRefPubMedGoogle Scholar
  4. Bang-Andersen B, Ruhland T, Jørgensen M, Smith G, Frederiksen K, Jensen KG, Zhong H, Nielsen SM, Hogg S, Mørk A, Stensbøl TB (2011) Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressed disorder. J Med Chem 54:3206–3221CrossRefPubMedGoogle Scholar
  5. Blardi P, De Lalla A, Leo A, Auteri A, Iapichino S, Di Muro A, Dell’Erba A, Castrogiovanni P (2002) Serotonin and fluoxetine levels in plasma and platelets after fluoxetine treatment in depressed patients. J Clin Psychopharmacol 22:131–136CrossRefPubMedGoogle Scholar
  6. Brunoni AR, Machado-Vieira R, Zarate CA Jr, Vieira EL, Vanderhasselt MA, Nitsche MA, Valiengo L, Benseñor IM, Lotufo PA, Gattaz WF, Teixeira AL (2014) BDNF plasma levels after antidepressant treatment with sertraline and transcranial direct current stimulation: results from a factorial, randomized, sham-controlled trial. Eur Neuropsychopharmacol 24:1144–1151CrossRefPubMedPubMedCentralGoogle Scholar
  7. Buttenschøn HN, Foldager L, Elfving B, Poulsen PHP, Uher R, Mors O (2015) Neurotrophic factors in depression in response to treatment. J Affect Disord 183:287–294CrossRefPubMedGoogle Scholar
  8. Castrén E (2004) Neurotrophic effects of antidepressant drugs. Curr Opin Pharmacol 4:58–64CrossRefPubMedGoogle Scholar
  9. Deuschle M, Gilles M, Scharnholz B, Lederbogen F, Lang UE, Hellweg R (2013) Changes of serum concentrations of brain-derived neurotrophic factor (BDNF) during treatment with venlafaxine and mirtazapine: role of medication and response to treatment. Pharmacopsychiatry 46:54–58PubMedGoogle Scholar
  10. Fornaro M, Escelsior A, Rocchi G, Conio B, Magioncalda P, Marozzi V, Presta A, Sterlini B, Contini P, Amore M, Fornaro P, Martino M (2015) BDNF plasma levels variations in major depressed patients receiving duloxetine. Neurol Sci 36:729–734CrossRefPubMedGoogle Scholar
  11. Fujimura H, Altar CA, Chen R, Nakamura T, Nakahashi T, Kambayashi J, Sun B, Tandon NN (2002) Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost 87:728–734PubMedGoogle Scholar
  12. Galter D, Unsicker K (2000) Brain-derived neurotrophic factor and trkB are essential for cAMP-mediated induction of the serotonergic neuronal phenotype. J Neurosci Res 61:295–301CrossRefPubMedGoogle Scholar
  13. Ghosh R, Gupta R, Bhatia MS, Tripathi AK, Gupta LK (2015) Comparison of efficacy, safety and brain derived neurotrophic factor (BDNF) levels in patients of major depressed disorder, treated with fluoxetine and desvenlafaxine. Asian J Psychiatr 18:37–41CrossRefPubMedGoogle Scholar
  14. Global burden of disease study 2013 collaborators (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386:743–800CrossRefPubMedCentralGoogle Scholar
  15. Gryglewski G, Lanzenberger R, Kranz GS, Cumming P (2014) Meta-analysis of molecular imaging of serotonin transporters in major depression. J Cereb Blood Flow Metab 34:1096–1103CrossRefPubMedPubMedCentralGoogle Scholar
  16. Haghighi M, Salehi I, Erfani P, Jahangard L, Bajoghli H, Holsboer-Trachsler E, Brand S (2013) Additional ECT increases BDNF-levels in patients suffering from major depressed disorders compared to patients treated with citalopram only. J Psychiatr Res 47:908–915CrossRefPubMedGoogle Scholar
  17. Karege F, Schwald M, Cisse M (2002) Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328:261–264CrossRefPubMedGoogle Scholar
  18. Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, Kolbeck R, Hoppe E, Oropeza-Wekerle RL, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870CrossRefPubMedPubMedCentralGoogle Scholar
  19. Klein N, Sacher J, Geiss-Granadia T, Mossaheb N, Attarbaschi T, Lanzenberger R, Spindelegger C, Holik A, Asenbaum S, Dudczak R, Tauscher J, Kasper S (2007) Higher serotonin transporter occupancy after multiple dose administration of escitalopram compared to citalopram: an [123I]ADAM SPECT study. Psychopharmacology (Berl) 191:333–339CrossRefGoogle Scholar
  20. Knorr U, Koefoed P, Soendergaard MH, Vinberg M, Gether U, Gluud C, Wetterslev J, Winkel P, Kessing LV (2015) No effect of escitalopram versus placebo on brain-derived neurotrophic factor in healthy individuals: a randomised trial. Acta Neuropsychiatr 28:101–109CrossRefPubMedGoogle Scholar
  21. Kovacic Z, Henigsberg N, Pivac N, Nedic G, Borovecki A (2008) Platelet serotonin concentration and suicidal behavior in combat related posttraumatic stress disorder. Progr Neuropsychopharmacol Biol Psychiatry 32:544–551CrossRefGoogle Scholar
  22. Launay JM, Del Pino M, Chironi G, Callebert J, Peoc’h K, Mégnien JL, Mallet J, Simon A, Rendu F (2009) Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation. PLoS ONE 4:e7959CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lee HY, Kim YK (2008) Plasma brain-derived neurotrophic factor as a peripheral marker for the action mechanism of antidepressants. Neuropsychobiology 57:194–199CrossRefPubMedGoogle Scholar
  24. Li X, Fan Y, Xiao S, Peng S, Dong X, Zheng X (2015) Decreased platelet 5-hydroxytryptamin (5-HT) levels: a response to antidepressants. J Affect Disord 187:84–90CrossRefPubMedGoogle Scholar
  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  26. Malhi GS, Hitching R, Berk M, Boyce P, Porter R, Fritz K (2013) Pharmacological management of unipolar depression. Acta Psychiatr Scand Suppl 443:6–23CrossRefPubMedGoogle Scholar
  27. Martinowich K, Lu B (2008) Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33:73–83CrossRefPubMedGoogle Scholar
  28. Meyer JH, Wilson AA, Sagrati S, Hussey D, Carella A, Potter WZ, Ginovart N, Spencer EP, Cheok A, Houle S (2004) Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: An [11C]DASB positron emission tomography study. Am J Psychiatry 161:826–835CrossRefPubMedGoogle Scholar
  29. Mihaljevic-Peles A, Sagud M, Janovic MB, Mikulic SK, Jevtovic S (2011) Do we need new therapeutic strategies for depression? Psychiatr Danub 23:300–301PubMedGoogle Scholar
  30. Mørk A, Pehrson A, Brennum LT, Nielsen SM, Zhong H, Lassen AB, Miller S, Westrich L, Boyle NJ, Sánchez C, Fischer CW, Liebenberg N, Wegener G, Bundgaard C, Hogg S, Bang-Andersen B, Stensbøl TB (2012) Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressed disorder. J Pharmacol Exp Ther 340:666–675CrossRefPubMedGoogle Scholar
  31. Muck-Seler D, Pivac N, Sagud M, Jakovljevic M, Mihaljevic-Peles A (2002) The effects of paroxetine and tianeptine on peripheral biochemical markers in major depression. Prog Neuropsychopharmacol Biol Psychiatry 26:1235–1243CrossRefPubMedGoogle Scholar
  32. Nakahashi T, Fujimura H, Altar CA, Li J, Kambayashi J, Tandon NN, Sun B (2000) Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett 470:113–117CrossRefPubMedGoogle Scholar
  33. Nenadic Sviglin K, Nedic G, Nikolac M, Mustapic M, Muck-Seler D, Borovecki F, Pivac N (2011) Insomnia, platelet serotonin and platelet monoamine oxidase in chronic alcoholism. Neurosci Lett 500:172–176CrossRefPubMedGoogle Scholar
  34. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ (1998) Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology 37:1553–1561CrossRefPubMedGoogle Scholar
  35. Piccinni A, Marazziti D, Catena M, Domenici L, Del Debbio A, Bianchi C, Mannari C, Martini C, Da Pozzo E, Schiavi E, Mariotti A, Roncaglia I, Palla A, Consoli G, Giovannini L, Massimetti G, Dell’Osso L (2008) Plasma and serum brain-derived neurotrophic factor (BDNF) in depressed patients during 1 year of antidepressant treatments. J Affect Disord 105:279–283CrossRefPubMedGoogle Scholar
  36. Pivac N, Muck-Seler D, Sagud M, Jakovljevic M, Mustapic M, Mihaljevic-Peles A (2003) Long-term sertraline treatment and peripheral biochemical markers in female depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 27:759–765CrossRefPubMedGoogle Scholar
  37. Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML (2015) BDNF as a biomarker for successful treatment of mood disorders: a systematic & quantitative meta-analysis. J Affect Disord 174:432–440CrossRefPubMedGoogle Scholar
  38. Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, Secher NH, Pedersen BK, Pilegaard H (2009) Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 94:1062–1069CrossRefPubMedGoogle Scholar
  39. Rominger A, Cumming P, Brendel M, Xiong G, Zach C, Karch S, Tatschd K, Bartensteina P, la Fougèree C, Kocha W, Pogarellc O (2015) Altered serotonin and dopamine transporter availabilities in brain of depressed patients upon treatment with escitalopram: A [123 I]β-CIT SPECT study. Eur Neuropsychopharmacol 25:873–881CrossRefPubMedGoogle Scholar
  40. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Am J Psychiat 163:1905–1917CrossRefPubMedGoogle Scholar
  41. Sanchez C, Asin KE, Artigas F (2015) Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther 145:43–57CrossRefPubMedGoogle Scholar
  42. Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64:527–532CrossRefPubMedPubMedCentralGoogle Scholar
  43. Stenkrona P, Halldin C, Lundberg J (2013) 5-HTT and 5-HT(1A) receptor occupancy of the novel substance vortioxetine (Lu AA21004). A PET study in control subjects. Eur Neuropsychopharmacol 23:1190–1198CrossRefPubMedGoogle Scholar
  44. Thomas L, Kessler D, Campbell J, Morrison J, Peters TJ, Williams C, Lewis G, Wiles N (2013) Prevalence of treatment-resistant depression in primary care: cross-sectional data. Br J Gen Pract 63:e852–e858CrossRefPubMedPubMedCentralGoogle Scholar
  45. Uebelhack R, Franke L, Herold N, Plotkin M, Amthauer H, Felix R (2006) Brain and platelet serotonin transporter in humans-correlation between [123I]-ADAM SPECT and serotonergic measurements in platelets. Neurosci Lett 406:153–158CrossRefPubMedGoogle Scholar
  46. Vaidya VA, Terwilliger RM, Duman RS (1999) Role of 5-HT2A receptors in the stress-induced down-regulation of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett 262:1–4CrossRefPubMedGoogle Scholar
  47. Yasui-Furukori N, Tsuchimine S, Nakagami T, Fujii A, Sato Y, Tomita T, Yoshizawa K, Inoue Y, Kaneko S (2011) Association between plasma paroxetine concentration and changes in plasma brain‐derived neurotrophic factor levels in patients with major depressed disorder. Hum Psychopharmacol 26:194–200CrossRefPubMedGoogle Scholar
  48. Yoshimura R, Kishi T, Hori H, Katsuki A, Sugita-Ikenouchi A, Umene-Nakano W, Atake K, Iwata N, Nakamura J (2014) Serum levels of brain-derived neurotrophic factor at 4 weeks and response to treatment with SSRIs. Psychiatry Investig 11:84–88CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yoshimura R, Mitoma M, Sugita A, Hori H, Okamoto T, Umene W, Ueda N, Nakamura J (2007) Effects of paroxetine or milnacipran on serum brain-derived neurotrophic factor in depressed patients. Prog. Neuropsychopharmacol. Biol Psychiatry 31:1034–1037Google Scholar
  50. Yubero-Lahoz S, Robledo P, Farré M, De Latorre R (2013) Platelet SERT as a peripheral biomarker of serotonergic neurotransmission in the central nervous system. Curr Med Chem 20:1382–1396CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marina Sagud
    • 1
  • Matea Nikolac Perkovic
    • 2
  • Bjanka Vuksan-Cusa
    • 1
    • 3
  • Anja Maravic
    • 4
  • Dubravka Svob Strac
    • 2
  • Alma Mihaljevic Peles
    • 1
  • Maja Zivkovic
    • 4
  • Zorana Kusevic
    • 1
  • Nela Pivac
    • 2
  1. 1.Department of Psychiatry, School of Medicine, Clinical Hospital Centre ZagrebUniversity of ZagrebZagrebCroatia
  2. 2.Rudjer Boskovic Institute, Division of Molecular MedicineZagrebCroatia
  3. 3.Faculty of MedicineJosip Juraj Strossmayer University of OsijekOsijekCroatia
  4. 4.Clinics for Psychiatry VrapceZagrebCroatia

Personalised recommendations