Advertisement

Psychopharmacology

, Volume 233, Issue 14, pp 2675–2686 | Cite as

Concomitants of alcoholism: differential effects of thiamine deficiency, liver damage, and food deprivation on the rat brain in vivo

  • Natalie M. Zahr
  • Edith V. Sullivan
  • Torsten Rohlfing
  • Dirk Mayer
  • Amy M. Collins
  • Richard Luong
  • Adolf Pfefferbaum
Original Investigation
  • 377 Downloads

Abstract

Rationale

Serious neurological concomitants of alcoholism include Wernicke’s encephalopathy (WE), Korsakoff’s syndrome (KS), and hepatic encephalopathy (HE).

Objectives

This study was conducted in animal models to determine neuroradiological signatures associated with liver damage caused by carbon tetrachloride (CCl4), thiamine deficiency caused by pyrithiamine treatment, and nonspecific nutritional deficiency caused by food deprivation.

Methods

Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) were used to evaluate brains of wild-type Wistar rats at baseline and following treatment.

Results

Similar to observations in ethanol (EtOH) exposure models, thiamine deficiency caused enlargement of the lateral ventricles. Liver damage was not associated with effects on cerebrospinal fluid volumes, whereas food deprivation caused modest enlargement of the cisterns. In contrast to what has repeatedly been shown in EtOH exposure models, in which levels of choline-containing compounds (Cho) measured by MRS are elevated, Cho levels in treated animals in all three experiments (i.e., liver damage, thiamine deficiency, and food deprivation) were lower than those in baseline or controls.

Conclusions

These results add to the growing body of literature suggesting that MRS-detectable Cho is labile and can depend on a number of variables that are not often considered in human experiments. These results also suggest that reductions in Cho observed in humans with alcohol use disorder (AUD) may well be due to mild manifestations of concomitants of AUD such as liver damage or nutritional deficiencies and not necessarily to alcohol consumption per se.

Keywords

Pyrithiamine Carbon tetrachloride Hematology Magnetic resonance Spectroscopy 

Notes

Acknowledgments

This study was supported with grant funding from the NIAAA including AA005965, AA013521, and AA017168. The authors would like to acknowledge Priya Asok, Crystal Caldwell, Cheshire Hardcastle, and Matthew Serventi for their help in the data collection.

Compliance with ethical standards

The Institutional Animal Care and Use Committees (IACUC) at SRI International and Stanford University approved all research protocols in accordance with the guidelines of the IACUC of the National Institute on Drug Abuse, National Institutes of Health, and the Guide for the Care and Use of Laboratory Animals (Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council 1996).

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

213_2016_4313_MOESM1_ESM.docx (713 kb)
ESM 1 (DOCX 712 kb)

References

  1. Bates TE, Williams SR, Kauppinen RA, Gadian DG (1989) Observation of cerebral metabolites in an animal model of acute liver failure in vivo: a 1H and 31P nuclear magnetic resonance study. J Neurochem 53:102–110CrossRefPubMedGoogle Scholar
  2. Bendszus M, Weijers HG, Wiesbeck G, Warmuth-Metz M, Bartsch AJ, Engels S, Boning J, Solymosi L (2001) Sequential MR imaging and proton MR spectroscopy in patients who underwent recent detoxification for chronic alcoholism: correlation with clinical and neuropsychological data. Am J Neuroradiol 22:1926–1932PubMedGoogle Scholar
  3. Bluml S, Zuckerman E, Tan J, Ross BD (1998) Proton-decoupled 31P magnetic resonance spectroscopy reveals osmotic and metabolic disturbances in human hepatic encephalopathy. J Neurochem 71:1564–1576CrossRefPubMedGoogle Scholar
  4. Boulanger Y, Labelle M, Khiat A (2000) Role of phospholipase A(2) on the variations of the choline signal intensity observed by 1H magnetic resonance spectroscopy in brain diseases. Brain Res Brain Res Rev 33:380–389CrossRefPubMedGoogle Scholar
  5. Butters N (1981) The Wernicke-Korsakoff syndrome: a review of psychological, neuropathological and etiological factors. Curr Alcohol 8:205–232PubMedGoogle Scholar
  6. Camchong J, Stenger A, Fein G (2013) Resting-state synchrony in long-term abstinent alcoholics. Alcohol Clin Exp Res 37:75–85CrossRefPubMedGoogle Scholar
  7. Chanraud S, Pitel AL, Muller-Oehring EM, Pfefferbaum A, Sullivan EV (2013) Remapping the brain to compensate for impairment in recovering alcoholics. Cereb Cortex 23:97–104CrossRefPubMedGoogle Scholar
  8. Chavarria L, Oria M, Romero-Gimenez J, Alonso J, Lope-Piedrafita S, Cordoba J (2013) Brain magnetic resonance in experimental acute-on-chronic liver failure. Liver Int 33:294–300CrossRefPubMedGoogle Scholar
  9. Chavez-Pina AE, Favari L, Castaneda-Hernandez G (2009) Pharmacokinetics of acemetacin and its active metabolite indomethacin in rats during acute hepatic damage and liver regeneration. Ann Hepatol 8:141–147PubMedGoogle Scholar
  10. Cordoba J, Alonso J, Rovira A, Jacas C, Sanpedro F, Castells L, Vargas V, Margarit C, Kulisewsky J, Esteban R, Guardia J (2001) The development of low-grade cerebral edema in cirrhosis is supported by the evolution of (1)H-magnetic resonance abnormalities after liver transplantation. J Hepatol 35:598–604CrossRefPubMedGoogle Scholar
  11. de Graaf AA, Deutz NE, Bosman DK, Chamuleau RA, de Haan JG, Bovee WM (1991) The use of in vivo proton NMR to study the effects of hyperammonemia in the rat cerebral cortex. NMR Biomed 4:31–37CrossRefPubMedGoogle Scholar
  12. Dror V, Eliash S, Rehavi M, Assaf Y, Biton IE, Fattal-Valevski A (2010) Neurodegeneration in thiamine deficient rats—a longitudinal MRI study. Brain Res 1308:176–184CrossRefPubMedGoogle Scholar
  13. Dror V, Rehavi M, Biton IE, Eliash S (2014) Rasagiline prevents neurodegeneration in thiamine deficient rats—a longitudinal MRI study. Brain Res 1557:43–54CrossRefPubMedGoogle Scholar
  14. Durazzo TC, Gazdzinski S, Banys P, Meyerhoff DJ (2004) Cigarette smoking exacerbates chronic alcohol-induced brain damage: a preliminary metabolite imaging study. Alcohol Clin Exp Res 28:1849–1860CrossRefPubMedGoogle Scholar
  15. Durazzo TC, Pathak V, Gazdzinski S, Mon A, Meyerhoff DJ (2010) Metabolite levels in the brain reward pathway discriminate those who remain abstinent from those who resume hazardous alcohol consumption after treatment for alcohol dependence. J Stud Alcohol Drugs 71:278–289CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ende G, Welzel H, Walter S, Weber-Fahr W, Diehl A, Hermann D, Heinz A, Mann K (2005) Monitoring the effects of chronic alcohol consumption and abstinence on brain metabolism: a longitudinal proton magnetic resonance spectroscopy study. Biol Psychiatry 58:974–980CrossRefPubMedGoogle Scholar
  17. Ende G, Walter S, Welzel H, Demirakca T, Wokrina T, Ruf M, Ulrich M, Diehl A, Henn FA, Mann K (2006) Alcohol consumption significantly influences the MR signal of frontal choline-containing compounds. NeuroImage 32:740–746CrossRefPubMedGoogle Scholar
  18. Enzmann DR, Lane B (1977) Cranial computed tomography findings in anorexia nervosa. J Comput Assist Tomogr 1:410–414CrossRefPubMedGoogle Scholar
  19. Fein G, Meyerhoff D, Di Sclafani V, Ezekiel F, Poole N, MacKay S, Dillon WP, Constans J-M, Weiner MW (1994) 1H magnetic resonance spectroscopic imaging separates neuronal from glial changes in alcohol-related brain atrophy. In: Lancaster F (ed) Alcohol and glial cells, NIAAA Research Monograph # 27. US Government Printing Office, Bethesda, pp 227–241Google Scholar
  20. Gallazzini M, Burg MB (2009) What’s new about osmotic regulation of glycerophosphocholine. Physiology 24:245–249CrossRefPubMedPubMedCentralGoogle Scholar
  21. Geissler A, Lock G, Frund R, Held P, Hollerbach S, Andus T, Scholmerich J, Feuerbach S, Holstege A (1997) Cerebral abnormalities in patients with cirrhosis detected by proton magnetic resonance spectroscopy and magnetic resonance imaging. Hepatology 25:48–54CrossRefPubMedGoogle Scholar
  22. Gerner RH, Cohen DJ, Fairbanks L, Anderson GM, Young JG, Scheinin M, Linnoila M, Shaywitz BA, Hare TA (1984) CSF neurochemistry of women with anorexia nervosa and normal women. Am J Psychiatry 141:1441–1444CrossRefPubMedGoogle Scholar
  23. Gopel C, Schmidt MH, Campanini M, Klein J (2002) Breakdown of choline-containing phospholipids in rat brain during severe weight loss. Neurosci Lett 326:21–24CrossRefPubMedGoogle Scholar
  24. Harper CG, Giles M, Finlay-Jones R (1986) Clinical signs in the Wernicke-Korsakoff complex: a retrospective analysis of 131 cases diagnosed at necropsy. J Neurol Neurosurg Psychiatry 49:341–345CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hazell AS (2009) Astrocytes are a major target in thiamine deficiency and Wernicke’s encephalopathy. Neurochem Int 55:129–135CrossRefPubMedGoogle Scholar
  26. Hazell AS, Butterworth RF (2009) Update of cell damage mechanisms in thiamine deficiency: focus on oxidative stress, excitotoxicity and inflammationGoogle Scholar
  27. He X, Sullivan EV, Stankovic RK, Harper CG, Pfefferbaum A (2007) Interaction of thiamine deficiency and voluntary alcohol consumption disrupts rat corpus callosum ultrastructure. Neuropsychopharmacology 32:2207–2216CrossRefPubMedGoogle Scholar
  28. Jagannathan NR, Desai NG, Raghunathan P (1996) Brain metabolite changes in alcoholism: an in vivo proton magnetic resonance spectroscopy (MRS) study. Magn Reson Imaging 14:553–557CrossRefPubMedGoogle Scholar
  29. Kreis R, Ross BD, Farrow NA, Ackerman Z (1992) Metabolic disorders of the brain in chronic hepatic encephalopathy detected with H-1 MR spectroscopy. Radiology 182:19–27CrossRefPubMedGoogle Scholar
  30. Kumar V, Abbas A, Fausto N, Robbins SL, Cotran RS (2005) Robbins and Cotran pathological basis of disease, 7th edn. Elsevier Saunders, Philadelphia, pp 25–26Google Scholar
  31. Langlais PJ, Savage LM (1995) Thiamine deficiency in rats produces cognitive and memory deficits on spatial tasks that correlate with tissue loss in diencephalon, cortex and white matter. Behav Brain Res 68:75–89CrossRefPubMedGoogle Scholar
  32. Langlais PJ, Zhang SX (1997) Cortical and subcortical white matter damage without Wernicke’s encephalopathy after recovery from thiamine deficiency in the rat. Alcohol Clin Exp Res 21:434–443PubMedGoogle Scholar
  33. Laubenberger J, Haussinger D, Bayer S, Gufler H, Hennig J, Langer M (1997) Proton magnetic resonance spectroscopy of the brain in symptomatic and asymptomatic patients with liver cirrhosis. Gastroenterology 112:1610–1616CrossRefPubMedGoogle Scholar
  34. Lee H, Tarter J, Holbourn GE, Price RR, Weinstein DD, Martin PR (1995) In vivo localized proton NMR spectroscopy of thiamine-deficient rat brain. Magn Reson Med 34:313–318CrossRefPubMedGoogle Scholar
  35. Lee JH, Seo DW, Lee YS, Kim ST, Mun CW, Lim TH, Min YI, Suh DJ (1999) Proton magnetic resonance spectroscopy (1H-MRS) findings for the brain in patients with liver cirrhosis reflect the hepatic functional reserve. Am J Gastroenterol 94:2206–2213CrossRefPubMedGoogle Scholar
  36. Lee H, Holburn GE, Price RR (2001) In vivo and in vitro proton NMR spectroscopic studies of thiamine-deficient rat brains. J Magn Reson Imaging 13:163–166CrossRefPubMedGoogle Scholar
  37. Losowsky MS, Scott BB (1973) Hepatic encephalopathy. Br Med J 3:279–281CrossRefPubMedPubMedCentralGoogle Scholar
  38. Majchrowicz E (1975) Induction of physical dependence upon ethanol and the associated behavioral changes in rats. Psychopharmacologia 43:245–254CrossRefPubMedGoogle Scholar
  39. Mann RE, Smart RG, Govoni R (2003) The epidemiology of alcoholic liver disease. Alcohol Res Health 27:209–219PubMedGoogle Scholar
  40. Mascalchi M, Belli G, Guerrini L, Nistri M, Del Seppia I, Villari N (2002) Proton MR spectroscopy of Wernicke encephalopathy. Ajnr 23:1803–1806PubMedGoogle Scholar
  41. Meyerhoff DJ, Blumenfeld R, Truran D, Lindgren J, Flenniken D, Cardenas V, Chao LL, Rothlind J, Studholme C, Weiner MW (2004) Effects of heavy drinking, binge drinking, and family history of alcoholism on regional brain metabolites. Alcohol: Clin Exp Res 28:650–661CrossRefGoogle Scholar
  42. Murata T, Omata N, Fujibayashi Y, Waki A, Sadato N, Yoshimoto M, Omori M, Isaki K, Yonekura Y (1999) Dynamic changes in glucose metabolism induced by thiamine deficiency and its replenishment as revealed by a positron autoradiography technique using rat living brain slices. J Neurol Sci 164:29–36CrossRefPubMedGoogle Scholar
  43. Murata T, Fujito T, Kimura H, Omori M, Itoh H, Wada Y (2001) Serial MRI and (1)H-MRS of Wernicke’s encephalopathy: report of a case with remarkable cerebellar lesions on MRI. Psychiatry Res 108:49–55CrossRefPubMedGoogle Scholar
  44. Nixon SJ, Prather R, Lewis B (2014) Sex differences in alcohol-related neurobehavioral consequences. Handb Clin Neurol 125:253–272CrossRefPubMedGoogle Scholar
  45. Oscar-Berman M, Valmas MM, Sawyer KS, Ruiz SM, Luhar RB, Gravitz ZR (2014) Profiles of impaired, spared, and recovered neuropsychologic processes in alcoholism. Handb Clin Neurol 125:183–210CrossRefPubMedPubMedCentralGoogle Scholar
  46. Parks MH, Dawant BM, Riddle WR, Hartmann SL, Dietrich MS, Nickel MK, Price RR, Martin PR (2002) Longitudinal brain metabolic characterization of chronic alcoholics with proton magnetic resonance spectroscopy. Alcohol: Clin Exp Res 26:1368–1380CrossRefGoogle Scholar
  47. Peeling J, Shoemaker L, Gauthier T, Benarroch A, Sutherland GR, Minuk GY (1993) Cerebral metabolic and histological effects of thioacetamide-induced liver failure. Am J Physiol 265:G572–G578PubMedGoogle Scholar
  48. Pfefferbaum A, Sullivan EV (2005) Disruption of brain white matter microstructure by excessive intracellular and extracellular fluid in alcoholism: evidence from diffusion tensor imaging. Neuropsychopharmacology 30:423–432CrossRefPubMedGoogle Scholar
  49. Pfefferbaum A, Adalsteinsson E, Bell RL, Sullivan EV (2007) Development and resolution of brain lesions caused by pyrithiamine- and dietary-induced thiamine deficiency and alcohol exposure in the alcohol-preferring rat: a longitudinal magnetic resonance imaging and spectroscopy study. Neuropsychopharmacology 32:1149–1177CrossRefGoogle Scholar
  50. Pfefferbaum A, Zahr NM, Mayer D, Vinco S, Orduna J, Rohlfing T, Sullivan EV (2008) Ventricular expansion in wild-type Wistar rats after alcohol exposure by vapor chamber. Alcohol Clin Exp Res 32:1459–1467CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pfefferbaum A, Rosenbloom MJ, Sassoon SA, Kemper CA, Deresinski S, Rohlfing T, Sullivan EV (2012) Regional brain structural dysmorphology in human immunodeficiency virus infection: effects of acquired immune deficiency syndrome, alcoholism, and age. Biol Psychiatry 72:361–370CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pitel AL, Chetelat G, Le Berre AP, Desgranges B, Eustache F, Beaunieux H (2012) Macrostructural abnormalities in Korsakoff syndrome compared with uncomplicated alcoholism. Neurology 78:1330–1333CrossRefPubMedGoogle Scholar
  53. Prasad S, Dhiman RK, Duseja A, Chawla YK, Sharma A, Agarwal R (2007) Lactulose improves cognitive functions and health-related quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. Hepatology 45:549–559CrossRefPubMedGoogle Scholar
  54. Rackayova V, Braissant O, McLin VA, Berset C, Lanz B, Cudalbu C (2015) 1H and 31P magnetic resonance spectroscopy in a rat model of chronic hepatic encephalopathy: in vivo longitudinal measurements of brain energy metabolism. Metabolic Brain Disease (in press).Google Scholar
  55. Rose SE, Nixon PF, Zelaya FO, Wholohan BT, Zimitat C, Moxon LN, Crozier S, Brereton IM, Doddrell DM (1993) Application of high field localised in vivo 1H MRS to study biochemical changes in the thiamin deficient rat brain under glucose load. NMR Biomed 6:324–328CrossRefPubMedGoogle Scholar
  56. Rosenbloom MJ, Sullivan EV, Pfefferbaum A (2010) HIV infection and alcoholism: comorbidity effects on brain structure and function. Alcohol Res Health 33:247–357PubMedPubMedCentralGoogle Scholar
  57. Ross BD, Jacobson S, Villamil F, Korula J, Kreis R, Ernst T, Shonk T, Moats RA (1994) Subclinical hepatic encephalopathy: proton MR spectroscopic abnormalities. Radiology 193:457–463CrossRefPubMedGoogle Scholar
  58. Rovira A, Cordoba J, Sanpedro F, Grive E, Rovira-Gols A, Alonso J (2002) Normalization of T2 signal abnormalities in hemispheric white matter with liver transplant. Neurology 59:335–341CrossRefPubMedGoogle Scholar
  59. Rovira A, Alonso J, Cordoba J (2008) MR imaging findings in hepatic encephalopathy. Ajnr 29:1612–1621CrossRefPubMedGoogle Scholar
  60. Schweinsburg BC, Alhassoon OM, Taylor MJ, Gonzalez R, Videen JS, Brown GG, Patterson TL, Grant I (2003) Effects of alcoholism and gender on brain metabolism. Am J Psychiatry 160:1180–1183CrossRefPubMedGoogle Scholar
  61. Sechi G, Serra A (2007) Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurol 6:442–455CrossRefPubMedGoogle Scholar
  62. Seitz D, Widmann U, Seeger U, Nagele T, Klose U, Mann K, Grodd W (1999) Localized proton magnetic resonance spectroscopy of the cerebellum in detoxifying alcoholics. Alcohol: Clin Exp Res 23:158–163CrossRefGoogle Scholar
  63. Vaquero J, Chung C, Cahill ME, Blei AT (2003) Pathogenesis of hepatic encephalopathy in acute liver failure. Semin Liver Dis 23:259–269CrossRefPubMedGoogle Scholar
  64. Vulimiri SV, Berger A, Sonawane B (2011) The potential of metabolomic approaches for investigating mode(s) of action of xenobiotics: case study with carbon tetrachloride. Mutat Res 722:147–153CrossRefPubMedGoogle Scholar
  65. Zahr NM, Mayer D, Vinco S, Orduna J, Luong R, Sullivan EV, Pfefferbaum A (2009a) In vivo evidence for alcohol-induced neurochemical changes in rat brain without protracted withdrawal, pronounced thiamine deficiency, or severe liver damage. Neuropsychopharmacology 34:1427–1442CrossRefPubMedGoogle Scholar
  66. Zahr NM, Mayer D, Rohlfing T, Hasak M, Hsu O, Vinco S, Orduna J, Sullivan EV, Pfefferbaum A (2009b) Binge ethanol induced structural and neurochemical changes in the rat brain detectable at 3T. International Society on Magnetic Resonance in Medicine, Honolulu, HAGoogle Scholar
  67. Zahr NM, Mayer D, Rohlfing T, Hasak M, Hsu O, Vinco S, Orduna J, Luong R, Sullivan EV, Pfefferbaum A (2010) Brain injury and recovery following binge ethanol: evidence from in vivo MR spectroscopy. Biol Psychiatry 67:846–854CrossRefPubMedGoogle Scholar
  68. Zahr NM, Mayer D, Rohlfing T, Orduna J, Luong R, Sullivan EV, Pfefferbaum A (2013) A mechanism of rapidly reversible cerebral ventricular enlargement independent of tissue atrophy. Neuropsychopharmacology 38:1121–1129CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zahr NM, Mayer D, Rohlfing T, Hsu O, Vinco S, Orduna J, Luong R, Bell RL, Sullivan EV, Pfefferbaum A (2014a) Rat strain differences in brain structure and neurochemistry in response to binge alcohol. Psychopharmacology 231:429–445CrossRefPubMedGoogle Scholar
  70. Zahr NM, Mayer D, Rohlfing T, Sullivan EV, Pfefferbaum A (2014b) Imaging neuroinflammation? A perspective from MR spectroscopy. Brain Pathol (Zurich, Switzerland) 24:654–664CrossRefGoogle Scholar
  71. Zahr NM, Alt C, Mayer D, Rohlfing T, Manning-Bog A, Luong R, Sullivan EV, Pfefferbaum A (2014c) Associations between in vivo neuroimaging and postmortem brain cytokine markers in a rodent model of Wernicke’s encephalopathy. Experimental Neurology 261:109–19CrossRefPubMedGoogle Scholar
  72. Zahr NM, Carr RA, Rohlfing T, Mayer D, Sullivan EV, Colrain IM, Pfefferbaum A (2015a) Brain metabolite levels in recently sober individuals with alcohol use disorder: dependence on use variables. Psychiatry Research 250:42–9CrossRefGoogle Scholar
  73. Zahr NM, Rohlfing T, Mayer D, Luong R, Sullivan EV, Pfefferbaum A (2015b) Transient CNS responses to repeated binge ethanol treatment. Addiction Biology. doi: 10.1111/adb.12290 PubMedGoogle Scholar
  74. Zhang SX, Weilersbacher GS, Henderson SW, Corso T, Olney JW, Langlais PJ (1995) Excitotoxic cytopathology, progression, and reversibility of thiamine deficiency-induced diencephalic lesions. J Neuropathol Exp Neurol 54:255–267Google Scholar
  75. Zwingmann C, Chatauret N, Rose C, Leibfritz D, Butterworth RF (2004) Selective alterations of brain osmolytes in acute liver failure: protective effect of mild hypothermia. Brain Res 999:118–123CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Natalie M. Zahr
    • 1
    • 2
  • Edith V. Sullivan
    • 1
  • Torsten Rohlfing
    • 2
  • Dirk Mayer
    • 2
    • 3
  • Amy M. Collins
    • 2
  • Richard Luong
    • 4
  • Adolf Pfefferbaum
    • 1
    • 2
  1. 1.Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordUSA
  2. 2.Neuroscience ProgramSRI InternationalMenlo ParkUSA
  3. 3.Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreUSA
  4. 4.Department of Comparative MedicineStanford UniversityStanfordUSA

Personalised recommendations