Advertisement

Psychopharmacology

, Volume 233, Issue 11, pp 2045–2054 | Cite as

Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain

  • Tatiana A. Shnitko
  • Sarah C. Taylor
  • Sierra J. Stringfield
  • Shannon L. Zandy
  • Roberto U. Cofresí
  • James M. Doherty
  • William B. Lynch
  • Charlotte A. Boettiger
  • Rueben A. Gonzales
  • Donita L. Robinson
Original Investigation

Abstract

Rationale

Dopamine plays a critical role in striatal and cortical function, and depletion of the dopamine precursors phenylalanine and tyrosine is used in humans to temporarily reduce dopamine and probe the role of dopamine in behavior. This method has been shown to alter addiction-related behaviors and cognitive functioning presumably by reducing dopamine transmission, but it is unclear what specific aspects of dopamine transmission are altered.

Objectives

We performed this study to confirm that administration of an amino acid mixture omitting phenylalanine and tyrosine (Phe/Tyr[−]) reduces tyrosine tissue content in the prefrontal cortex (PFC) and nucleus accumbens (NAc), and to test the hypothesis that Phe/Tyr[−] administration reduces phasic dopamine release in the NAc.

Methods

Rats were injected with a Phe/Tyr[−] amino acid mixture, a control amino acid mixture, or saline. High-performance liquid chromatography was used to determine the concentration of tyrosine, dopamine, or norepinephrine in tissue punches from the PFC and ventral striatum. In a separate group of rats, phasic dopamine release was measured with fast-scan cyclic voltammetry in the NAc core after injection with either the Phe/Tyr[−] mixture or the control amino acid solution.

Results

Phe/Tyr[−] reduced tyrosine content in the PFC and NAc, but dopamine and norepinephrine tissue content were not reduced. Moreover, Phe/Tyr[−] decreased the frequency of dopamine transients, but not their amplitude, in freely moving rats.

Conclusions

These results indicate that depletion of tyrosine via Phe/Tyr[−] decreases phasic dopamine transmission, providing insight into the mechanism by which this method modifies dopamine-dependent behaviors in human imaging studies.

Keywords

(Up to 10) Dopamine Norepinephrine Tyrosine Fast-scan cyclic voltammetry Nucleus accumbens Prefrontal cortex Depletion 

Notes

Acknowledgments

Authors thank Dr. Paul Kropp for consultation on protocols for the amino acid mixtures, Dr. Chris Wiesen (UNC Odum Institute for Research in Social Science) for statistical consultation, and Drs. Margaret Broadwater and Aric Madayag for technical assistance and critical comments on the manuscript.

Author contribution

DLR and CAB conceptualized the experiments. TAS, SCT, DLR, and WL collected and analyzed the voltammetric data. SJS, SZ, RUC, JMD, and RAG set up HPLC procedures and collected and analyzed the tissue content data. DLR, TAS, SJS, SZ, CAB, and RAG interpreted the data and prepared the manuscript.

Compliance with ethical standards

Funding

This research was funded by the NIH (P60 AA011605, Project no. 3), the UNC Bowles Center for Alcohol Studies, R37 AA011852 and R01 AA014874. SCT was supported on a Summer Undergraduate Research Fellowship from UNC Chapel Hill. SJS was supported on 5P60AA011605-17S1 and JMD was supported on T32 AA007471.

Conflict of interest

The authors declare that they have no competing conflict of interest.

References

  1. Alabi AA, Tsien RW (2012) Synaptic vesicle pools and dynamics. Cold Spring Harb Perspect Biol 4:a013680CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barrett SP, Pihl RO, Benkelfat C, Brunelle C, Young SN, Leyton M (2008) The role of dopamine in alcohol self-administration in humans: individual differences. Eur Neuropsychopharmacol 18:439–447CrossRefPubMedGoogle Scholar
  3. Bongiovanni R, Newbould E, Jaskiw GE (2008) Tyrosine depletion lowers dopamine synthesis and desipramine-induced prefrontal cortex catecholamine levels. Brain Res 1190:39–48CrossRefPubMedGoogle Scholar
  4. Borland LM, Shi G, Yang H, Michael AC (2005) Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat. J Neurosci Methods 146:149–158CrossRefPubMedGoogle Scholar
  5. Brodnik Z, Double M, Jaskiw GE (2013) Presynaptic regulation of extracellular dopamine levels in the medial prefrontal cortex and striatum during tyrosine depletion. Psychopharmacology 227:363–371CrossRefPubMedGoogle Scholar
  6. Cawley EI, Park S, aan het Rot M, Sancton K, Benkelfat C, Young SN, Boivin DB, Leyton M (2013) Dopamine and light: dissecting effects on mood and motivational states in women with subsyndromal seasonal affective disorder. J Psychiatry Neurosci 38:388–397CrossRefPubMedPubMedCentralGoogle Scholar
  7. Day JJ, Roitman MF, Wightman RM, Carelli RM (2007) Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci 10:1020–1028CrossRefPubMedGoogle Scholar
  8. Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD (2010) Influence of phasic and tonic dopamine release on receptor activation. J Neurosci 30:14273–14283CrossRefPubMedGoogle Scholar
  9. Fernstrom MH, Fernstrom JD (1995) Acute tyrosine depletion reduces tyrosine hydroxylation rate in rat central nervous system. Life Sci 57:PL97–PL102CrossRefPubMedGoogle Scholar
  10. Garris PA, Walker QD, Wightman RM (1997) Dopamine release and uptake rates both decrease in the partially denervated striatum in proportion to the loss of dopamine terminals. Brain Res 753:225–234CrossRefPubMedGoogle Scholar
  11. Harmer CJ, McTavish SF, Clark L, Goodwin GM, Cowen PJ (2001) Tyrosine depletion attenuates dopamine function in healthy volunteers. Psychopharmacology 154:105–111CrossRefPubMedGoogle Scholar
  12. Hermans A, Keithley RB, Kita JM, Sombers LA, Wightman RM (2008) Dopamine detection with fast-scan cyclic voltammetry used with analog background subtraction. Anal Chem 80:4040–4048CrossRefPubMedGoogle Scholar
  13. Howard CD, Daberkow DP, Ramsson ES, Keefe KA, Garris PA (2013) Methamphetamine-induced neurotoxicity disrupts naturally occurring phasic dopamine signaling. Eur J Neurosci 38:2078–2088CrossRefPubMedPubMedCentralGoogle Scholar
  14. Howard CD, Keefe KA, Garris PA, Daberkow DP (2011) Methamphetamine neurotoxicity decreases phasic, but not tonic, dopaminergic signaling in the rat striatum. J Neurochem 118:668–676CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jaskiw GE, Bongiovanni R (2004) Brain tyrosine depletion attenuates haloperidol-induced striatal dopamine release in vivo and augments haloperidol-induced catalepsy in the rat. Psychopharmacology 172:100–107CrossRefPubMedGoogle Scholar
  16. Jaskiw GE, Kirkbride B, Bongiovanni R (2006) In rats chronically treated with clozapine, tyrosine depletion attenuates the clozapine-induced in vivo increase in prefrontal cortex dopamine and norepinephrine levels. Psychopharmacology 185:416–422CrossRefPubMedGoogle Scholar
  17. Jaskiw GE, Kirkbride B, Newbould E, Young D, Durkalski V, Bongiovanni R (2005) Clozapine-induced dopamine release in the medial prefrontal cortex is augmented by a moderate concentration of locally administered tyrosine but attenuated by high tyrosine concentrations or by tyrosine depletion. Psychopharmacology 179:713–724CrossRefPubMedGoogle Scholar
  18. Kelm MK, Boettiger CA (2013) Effects of acute dopamine precursor depletion on immediate reward selection bias and working memory depend on catechol-O-methyltransferase genotype. J Cogn Neurosci 25:2061–2071CrossRefPubMedGoogle Scholar
  19. Kelm MK, Boettiger CA (2015) Age moderates the effect of acute dopamine depletion on passive avoidance learning. Pharmacol Biochem Behav 131:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kishida KT, Sandberg SG, Lohrenz T, Comair YG, Saez I, Phillips PE, Montague PR (2011) Sub-second dopamine detection in human striatum. PLoS One 6:e23291CrossRefPubMedPubMedCentralGoogle Scholar
  21. Le Masurier M, Oldenzeil W, Lehman C, Cowen P, Sharp T (2006) Effect of acute tyrosine depletion in using a branched chain amino-acid mixture on dopamine neurotransmission in the rat brain. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 31:310–317CrossRefGoogle Scholar
  22. Le Masurier M, Zetterstrom T, Cowen P, Sharp T (2013) Tyrosine-free amino acid mixtures reduce physiologically-evoked release of dopamine in a selective and activity-dependent manner. J Psychopharmacol 28:561–569CrossRefPubMedGoogle Scholar
  23. Leyton M, Dagher A, Boileau I, Casey K, Baker GB, Diksic M, Gunn R, Young SN, Benkelfat C (2004) Decreasing amphetamine-induced dopamine release by acute phenylalanine/tyrosine depletion: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 29:427–432CrossRefPubMedGoogle Scholar
  24. Leyton M, Young SN, Blier P, Baker GB, Pihl RO, Benkelfat C (2000a) Acute tyrosine depletion and alcohol ingestion in healthy women. Alcohol Clin Exp Res 24:459–464CrossRefPubMedGoogle Scholar
  25. Leyton M, Young SN, Pihl RO, Etezadi S, Lauze C, Blier P, Baker GB, Benkelfat C (2000b) Effects on mood of acute phenylalanine/tyrosine depletion in healthy women. Neuropsychopharmacology 22:52–63CrossRefPubMedGoogle Scholar
  26. McMillen BA, German DC, Shore PA (1980) Functional and pharmacological significance of brain dopamine and norepinephrine storage pools. Biochem Pharmacol 29:3045–3050CrossRefPubMedGoogle Scholar
  27. McTavish SF, Callado L, Cowen PJ, Sharp T (1999a) Comparison of the effects of alpha-methyl-p-tyrosine and a tyrosine-free amino acid load on extracellular noradrenaline in the rat hippocampus in vivo. J Psychopharmacol 13:379–384CrossRefPubMedGoogle Scholar
  28. McTavish SF, Cowen PJ, Sharp T (1999b) Effect of a tyrosine-free amino acid mixture on regional brain catecholamine synthesis and release. Psychopharmacology 141:182–188CrossRefPubMedGoogle Scholar
  29. McTavish SF, McPherson MH, Harmer CJ, Clark L, Sharp T, Goodwin GM, Cowen PJ (2001) Antidopaminergic effects of dietary tyrosine depletion in healthy subjects and patients with manic illness. Br J Psychiatry 179:356–360CrossRefPubMedGoogle Scholar
  30. Michael D, Travis ER, Wightman RM (1998) Color images for fast-scan CV measurements in biological systems. Anal Chem 70:586A–592ACrossRefPubMedGoogle Scholar
  31. Moja EA, Lucini V, Benedetti F, Lucca A (1996) Decrease in plasma phenylalanine and tyrosine after phenylalanine-tyrosine free amino acid solutions in man. Life Sci 58:2389–2395CrossRefPubMedGoogle Scholar
  32. Montgomery AJ, McTavish SF, Cowen PJ, Grasby PM (2003) Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C]raclopride PET study. Am J Psychiatry 160:1887–1889CrossRefPubMedGoogle Scholar
  33. Park J, Takmakov P, Wightman RM (2011) In vivo comparison of norepinephrine and dopamine release in rat brain by simultaneous measurements with fast-scan cyclic voltammetry. J Neurochem 119:932–944CrossRefPubMedPubMedCentralGoogle Scholar
  34. Robinson DL, Heien ML, Wightman RM (2002) Frequency of dopamine concentration transients increases in dorsal and ventral striatum of male rats during introduction of conspecifics. J Neurosci 22:10477–10486Google Scholar
  35. Robinson DL, Hermans A, Seipel AT, Wightman RM (2008) Monitoring rapid chemical communication in the brain. Chem Rev 108:2554–2584CrossRefPubMedPubMedCentralGoogle Scholar
  36. Robinson DL, Howard EC, McConnell S, Gonzales RA, Wightman RM (2009) Disparity between tonic and phasic ethanol-induced dopamine increases in the nucleus accumbens of rats. Alcohol Clin Exp Res 33:1187–1196CrossRefPubMedPubMedCentralGoogle Scholar
  37. Robinson DL, Venton BJ, Heien ML, Wightman RM (2003) Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem 49:1763–1773CrossRefPubMedGoogle Scholar
  38. Robinson DL, Wightman RM (2004) Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely-moving rats. J Neurochem 90:894–903CrossRefPubMedGoogle Scholar
  39. Robinson DL, Zitzman DL, Smith KJ, Spear LP (2011) Fast dopamine release events in the nucleus accumbens of early adolescent rats. Neuroscience 176:296–307CrossRefPubMedGoogle Scholar
  40. Sanghera MK, German DC, Kiser RS, Shore PA (1979) Differences in norepinephrine and dopamine neurotransmitter storage systems. Brain Res Bull 4:217–221CrossRefPubMedGoogle Scholar
  41. Schultz W (2016) Dopamine reward prediction-error signalling: a two-component response. Nat Rev NeurosciGoogle Scholar
  42. Sheehan BD, Tharyan P, McTavish SF, Campling GM, Cowen PJ (1996) Use of a dietary manipulation to deplete plasma tyrosine and phenylalanine in healthy subjects. J Psychopharmacol 10:231–234CrossRefPubMedGoogle Scholar
  43. Shnitko TA, Robinson DL (2014) Anatomical and pharmacological characterization of catecholamine transients in the medial prefrontal cortex evoked by ventral tegmental area stimulation. Synapse 68:131–143CrossRefPubMedGoogle Scholar
  44. Shnitko TA, Robinson DL (2015) Regional variation in phasic dopamine release during alcohol and sucrose self-administration in rats. ACS Chem Neurosci 6:147–154CrossRefPubMedGoogle Scholar
  45. Smith S, Sharp T (1994) Measurement of GABA in rat brain microdialysates using o-phthaldialdehyde-sulphite derivatization and high-performance liquid chromatography with electrochemical detection. J Chromatogr 652:228–233CrossRefPubMedGoogle Scholar
  46. Sombers LA, Beyene M, Carelli RM, Wightman RM (2009) Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area. J Neurosci 29:1735–1742Google Scholar
  47. Venugopalan VV, Casey KF, O’Hara C, O’Loughlin J, Benkelfat C, Fellows LK, Leyton M (2011) Acute phenylalanine/tyrosine depletion reduces motivation to smoke cigarettes across stages of addiction. Neuropsychopharmacology 36:2469–2476CrossRefPubMedPubMedCentralGoogle Scholar
  48. Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, Sedler MJ, Gatley SJ, Hitzemann R, Ding YS, Logan J, Wong C, Miller EN (2001) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158:377–382CrossRefPubMedGoogle Scholar
  49. Willuhn I, Wanat MJ, Clark JJ, Phillips PE (2010) Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr Top Behav Neurosci 3:29–71CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tatiana A. Shnitko
    • 1
  • Sarah C. Taylor
    • 1
  • Sierra J. Stringfield
    • 1
    • 2
  • Shannon L. Zandy
    • 3
  • Roberto U. Cofresí
    • 3
  • James M. Doherty
    • 3
  • William B. Lynch
    • 1
  • Charlotte A. Boettiger
    • 1
    • 2
    • 4
  • Rueben A. Gonzales
    • 3
  • Donita L. Robinson
    • 1
    • 2
    • 5
  1. 1.Bowles Center for Alcohol StudiesUniversity of North CarolinaChapel HillUSA
  2. 2.Neurobiology CurriculumUniversity of North CarolinaChapel HillUSA
  3. 3.Division of Pharmacology and Toxicology, College of PharmacyThe University of Texas at AustinAustinUSA
  4. 4.Department of Psychology and NeuroscienceUniversity of North CarolinaChapel HillUSA
  5. 5.Department of PsychiatryUniversity of North CarolinaChapel HillUSA

Personalised recommendations