, Volume 233, Issue 10, pp 1911–1919 | Cite as

A role for the endocannabinoid 2-arachidonoyl-sn-glycerol for social and high-fat food reward in male mice

  • Don Wei
  • DaYeon Lee
  • Dandan Li
  • Jennifer Daglian
  • Kwang-Mook Jung
  • Daniele PiomelliEmail author
Original Investigation



The endocannabinoid system is an important modulator of brain reward signaling. Investigations have focused on cannabinoid (CB1) receptors, because dissection of specific contributions of individual endocannabinoids has been limited by the available toolset. While we recently described an important role for the endocannabinoid anandamide in the regulation of social reward, it remains to be determined whether the other major endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG), serves a similar or different function.


To study the role of 2-AG in natural reward, we used a transgenic mouse model (MGL-Tg mice) in which forebrain 2-AG levels are selectively reduced. We complemented behavioral analysis with measurements of brain 2-AG levels.


We tested male MGL-Tg mice in conditioned place preference (CPP) tasks for high-fat food, social contact, and cocaine. We measured 2-AG content in the brain regions of interest by liquid chromatography/mass spectrometry.


Male MGL-Tg mice are impaired in developing CPP for high-fat food and social interaction, but do develop CPP for cocaine. Furthermore, compared to isolated mice, levels of 2-AG in socially stimulated wild-type mice are higher in the nucleus accumbens and ventral hippocampus (183 and 140 % of controls, respectively), but unchanged in the medial prefrontal cortex.


The results suggest that reducing 2-AG-mediated endocannabinoid signaling impairs social and high-fat food reward in male mice, and that social stimulation mobilizes 2-AG in key brain regions implicated in the control of motivated behavior. The time course of this response differentiates 2-AG from anandamide, whose role in mediating social reward was previously documented.


Monoacylglycerol lipase Social reward High-fat reward 



The authors thank Terri Wang for her generous gift. The authors thank the Autism Science Foundation, the UC Irvine Center for Autism Research and Translation, and the UC Irvine Medical Scientist Training Program.

Compliance with ethical standards

All procedures met the National Institute of Health guidelines for the care and use of laboratory animals and were approved by the Institutional Animal Care and Use Committee at University of California, Irvine.

Conflict of interest

The authors declare that they have no competing interests.


  1. Arnone M, Maruani J, Chaperon F et al (1997) Selective inhibition of sucrose and ethanol intake by SR 141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacology 132:104–106CrossRefPubMedGoogle Scholar
  2. Astarita G, Piomelli D (2009) Lipidomic analysis of endocannabinoid metabolism in biological samples. J Chromatogr B 877:2755–2767. doi: 10.1016/j.jchromb.2009.01.008 CrossRefGoogle Scholar
  3. Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153:31–43. doi: 10.1007/s002130000569 CrossRefPubMedGoogle Scholar
  4. Brabant C, Quertemont E, Tirelli E (2005) Influence of the dose and the number of drug-context pairings on the magnitude and the long-lasting retention of cocaine-induced conditioned place preference in C57BL/6J mice. Psychopharmacology 180:33–40. doi: 10.1007/s00213-004-2138-6 CrossRefPubMedGoogle Scholar
  5. Cassano T, Gaetani S, Macheda T et al (2011) Evaluation of the emotional phenotype and serotonergic neurotransmission of fatty acid amide hydrolase-deficient mice. Psychopharmacology 214:465–476CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chanda PK, Gao Y, Mark L et al (2010) Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system. Mol Pharmacol 78:996–1003. doi: 10.1124/mol.110.068304 CrossRefPubMedGoogle Scholar
  7. Cravatt BF, Demarest K, Patricelli MP et al (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A 98:9371–9376. doi: 10.1073/pnas.161191698 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Di Marzo V, Goparaju SK, Wang L et al (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–825. doi: 10.1038/35071088 CrossRefPubMedGoogle Scholar
  9. Dinh TP, Carpenter D, Leslie FM et al (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci U S A 99:10819–10824. doi: 10.1073/pnas.152334899 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dölen G, Darvishzadeh A, Huang KW, Malenka RC (2013) Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501:179–184. doi: 10.1038/nature12518 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fattore L, Melis M, Fadda P et al (2010) The endocannabinoid system and nondrug rewarding behaviours. Exp Neurol 224:23–36CrossRefPubMedGoogle Scholar
  12. File SE, Seth P (2003) A review of 25 years of the social interaction test. Eur J Pharmacol 463:35–53. doi: 10.1016/S0014-2999(03)01273-1 CrossRefPubMedGoogle Scholar
  13. Gaetani S, Oveisi F, Piomelli D (2003) Modulation of meal pattern in the rat by the anorexic lipid mediator oleoylethanolamide. Neuropsychopharmacology 28:1311–1316. doi: 10.1038/sj.npp.1300166 CrossRefPubMedGoogle Scholar
  14. Gao Y, Vasilyev DV, Goncalves MB et al (2010) Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci 30:2017–2024. doi: 10.1523/JNEUROSCI.5693-09.2010 CrossRefPubMedGoogle Scholar
  15. Gardner EL (2005) Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav 81:263–284. doi: 10.1016/j.pbb.2005.01.032 CrossRefPubMedGoogle Scholar
  16. Haller J, Varga B, Ledent C et al (2004) Context‐dependent effects of CB1 cannabinoid gene disruption on anxiety‐like and social behaviour in mice. Eur J Neurosci 19:1906–1912CrossRefPubMedGoogle Scholar
  17. Hohmann AG, Suplita RL, Bolton NM et al (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108–1112CrossRefPubMedGoogle Scholar
  18. Insel TR (2010) The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 65:768–779. doi: 10.1016/j.neuron.2010.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jung K-M, Clapper JR, Fu J et al (2012) 2-arachidonoylglycerol signaling in forebrain regulates systemic energy metabolism. Cell Metab 15:299–310. doi: 10.1016/j.cmet.2012.01.021 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kathuria S, Gaetani S, Fegley D et al (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81CrossRefPubMedGoogle Scholar
  21. Kirkham TC, Williams CM, Fezza F, Marzo VD (2002) Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 136:550–557. doi: 10.1038/sj.bjp.0704767 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Maldonado R, Valverde O, Berrendero F (2006) Involvement of the endocannabinoid system in drug addiction. Trends Neurosci 29:225–232. doi: 10.1016/j.tins.2006.01.008 CrossRefPubMedGoogle Scholar
  23. McFarlane HG, Kusek GK, Yang M et al (2008) Autism‐like behavioral phenotypes in BTBR T+ tf/J mice. Genes Brain Behav 7:152–163CrossRefPubMedGoogle Scholar
  24. Mechoulam R, Parker LA (2013) The endocannabinoid system and the brain. Annu Rev Psychol 64:21–47. doi: 10.1146/annurev-psych-113011-143739 CrossRefPubMedGoogle Scholar
  25. Panksepp JB, Lahvis GP (2007) Social reward among juvenile mice. Genes Brain Behav 6:661–671CrossRefPubMedPubMedCentralGoogle Scholar
  26. Panksepp J, Nelson E, Bekkedal M (1997) Brain systems for the mediation of social separation‐distress and social‐reward evolutionary antecedents and neuropeptide intermediaries. Ann N Y Acad Sci 807:78–100CrossRefPubMedGoogle Scholar
  27. Parsons LH, Hurd YL (2015) Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci 16:579–594. doi: 10.1038/nrn4004 CrossRefPubMedGoogle Scholar
  28. Pearson BL, Bettis JK, Meyza KZ et al (2012) Absence of social conditioned place preference in BTBR T+ tf/J mice: relevance for social motivation testing in rodent models of autism. Behav Brain Res 233:99–104. doi: 10.1016/j.bbr.2012.04.040 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Perello M, Sakata I, Birnbaum S et al (2010) Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol Psychiatry 67:880–886. doi: 10.1016/j.biopsych.2009.10.030 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Piomelli D (2014) More surprises lying ahead. The endocannabinoids keep us guessing. Neuropharmacology 76:228–234CrossRefPubMedGoogle Scholar
  31. Sanchis-Segura C, Cline BH, Marsicano G et al (2004) Reduced sensitivity to reward in CB1 knockout mice. Psychopharmacology 176:223–232. doi: 10.1007/s00213-004-1877-8 CrossRefPubMedGoogle Scholar
  32. Schlosburg JE, Blankman JL, Long JZ et al (2010) Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Publ Group 13:1113–1119. doi: 10.1038/nn.2616 Google Scholar
  33. Silverman JL, Smith DG, Rizzo SJS et al (2012) Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med 4:131ra51–131ra51. doi: 10.1126/scitranslmed.3003501 PubMedGoogle Scholar
  34. Solinas M, Goldberg SR (2005) Motivational effects of cannabinoids and opioids on food reinforcement depend on simultaneous activation of cannabinoid and opioid systems. Neuropsychopharmacology 30:2035–2045. doi: 10.1038/sj.npp.1300720 CrossRefPubMedGoogle Scholar
  35. Solinas M, Goldberg SR, Piomelli D (2008) The endocannabinoid system in brain reward processes. Br J Pharmacol 154:369–383. doi: 10.1038/bjp.2008.130 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Trezza V, Vanderschuren LJ (2008) Bidirectional cannabinoid modulation of social behavior in adolescent rats. Psychopharmacology 197:217–227. doi: 10.1007/s00213-007-1025-3 CrossRefPubMedGoogle Scholar
  37. Wei D, Lee D, Cox CD, et al. (2015) Endocannabinoid signaling mediates oxytocin-driven social reward. Proc Natl Acad Sci USA 201509795. doi: 10.1073/pnas.1509795112
  38. Williams CM, Kirkham TC (1999) Anandamide induces overeating: mediation by central cannabinoid (CB1) receptorsGoogle Scholar
  39. Young LJ, Barrett CE (2015) Can oxytocin treat autism?: we are still at an early stage of assessing oxytocin-based therapy for autism spectrum disorders. Sci (New York, NY) 347:825CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Authors and Affiliations

  1. 1.Department of Anatomy and NeurobiologyUniversity of California, IrvineIrvineUSA
  2. 2.Department of OphthalmologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
  3. 3.Unit of Drug Discovery and DevelopmentItalian Institute of TechnologyGenovaItaly
  4. 4.Department of Biological ChemistryUniversity of California, IrvineIrvineUSA

Personalised recommendations