Advertisement

Psychopharmacology

, Volume 233, Issue 10, pp 1963–1979 | Cite as

Mechanisms of the psychostimulant effects of caffeine: implications for substance use disorders

  • Sergi Ferré
Review

Abstract

Background

The psychostimulant properties of caffeine are reviewed and compared with those of prototypical psychostimulants able to cause substance use disorders (SUD). Caffeine produces psychomotor-activating, reinforcing, and arousing effects, which depend on its ability to disinhibit the brake that endogenous adenosine imposes on the ascending dopamine and arousal systems.

Objectives

A model that considers the striatal adenosine A2A-dopamine D2 receptor heteromer as a key modulator of dopamine-dependent striatal functions (reward-oriented behavior and learning of stimulus-reward and reward-response associations) is introduced, which should explain most of the psychomotor and reinforcing effects of caffeine.

Highlights

The model can explain the caffeine-induced rotational behavior in rats with unilateral striatal dopamine denervation and the ability of caffeine to reverse the adipsic-aphagic syndrome in dopamine-deficient rodents. The model can also explain the weaker reinforcing effects and low abuse liability of caffeine, compared with prototypical psychostimulants. Finally, the model can explain the actual major societal dangers of caffeine: the ability of caffeine to potentiate the addictive and toxic effects of drugs of abuse, with the particularly alarming associations of caffeine (as adulterant) with cocaine, amphetamine derivatives, synthetic cathinones, and energy drinks with alcohol, and the higher sensitivity of children and adolescents to the psychostimulant effects of caffeine and its potential to increase vulnerability to SUD.

Conclusions

The striatal A2A-D2 receptor heteromer constitutes an unequivocal main pharmacological target of caffeine and provides the main mechanisms by which caffeine potentiates the acute and long-term effects of prototypical psychostimulants.

Keywords

Caffeine Psychostimulants Adenosine Dopamine Receptor heteromer Drug abuse Alcohol 

Notes

Acknowledgments

This work was supported by the intramural funds of the National Institute on Drug Abuse. The author thanks Dr. Roy A. Wise for his critical review of the manuscript.

References

  1. Abraham AD, Neve KA, Lattal KM (2014) Dopamine and extinction: a convergence of theory with fear and reward circuitry. Neurobiol Learn Mem 108:65–77PubMedCrossRefGoogle Scholar
  2. Acevedo J, Santana-Almansa A, Matos-Vergara N, Marrero-Cordero LR, Cabezas-Bou E, Díaz-Ríos M (2016) Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms. Neuropharmacology 101:490–505PubMedCrossRefGoogle Scholar
  3. Addicott MA (2014) Caffeine use disorder: a review of the evidence and future implications. Curr Addict Rep 1:186–192PubMedPubMedCentralCrossRefGoogle Scholar
  4. Addicott MA, Laurienti PJ (2009) A comparison of the effects of caffeine following abstinence and normal caffeine use. Psychopharmacology 207:423–431PubMedPubMedCentralCrossRefGoogle Scholar
  5. American Psychiatry Association (2013) Diagnostic and statistical manual of mental disorders. 5th edGoogle Scholar
  6. Andén NE, Jackson DM (1975) Locomotor activity stimulation in rats produced by dopamine in the nucleus accumbens: potentiation by caffeine. J Pharm Pharmacol 27:666–670PubMedCrossRefGoogle Scholar
  7. Antonini A, Vontobel P, Psylla M, Günther I, Maguire PR, Missimer J, Leenders KL (1995) Complementary positron emission tomographic studies of the striatal dopaminergic system in Parkinson's disease. Arch Neurol 52:1183–1190PubMedCrossRefGoogle Scholar
  8. Antoniou K, Papadopoulou-Daifoti Z, Hyphantis T, Papathanasiou G, Bekris E, Marselos M, Panlilio L, Müller CE, Goldberg SR, Ferré S (2005) A detailed behavioral analysis of the acute motor effects of caffeine in the rat: involvement of adenosine A1 and A2A receptors. Psychopharmacology 183:154–162PubMedCrossRefGoogle Scholar
  9. Armentero MT, Pinna A, Ferré S, Lanciego JL, Müller CE, Franco R (2011) Past, present and future of A(2A) adenosine receptor antagonists in the therapy of Parkinson's disease. Pharmacol Ther 132:280–299PubMedPubMedCentralCrossRefGoogle Scholar
  10. Azdad K, Gall D, Woods AS, Ledent C, Ferré S, Schiffmann SN (2009) Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in accumbens neurons through A2A-D2 receptor heteromerization. Neuropsychopharmacology 34:972–986PubMedCrossRefGoogle Scholar
  11. Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep-wake regulation. Prog Neurobiol 73:379–396PubMedCrossRefGoogle Scholar
  12. Bhattacharjee AK, Lang L, Jacobson O, Shinkre B, Ma Y, Niu G, Trenkle WC, Jacobson KA, Chen X, Kiesewetter DO (2011) Striatal adenosine A(2A) receptor-mediated positron emission tomographic imaging in 6-hydroxydopamine-lesioned rats using [(18)F]-MRS5425. Nucl Med Biol 38:897–906PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bonaventura J, Navarro G, Casadó-Anguera V, Azdad K, Rea W, Moreno E, Brugarolas M, Mallol J, Canela EI, Lluís C, Cortés A, Volkow ND, Schiffmann SN, Ferré S, Casadó V (2015) Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer. Proc Natl Acad Sci U S A 112:E3609–E3618PubMedPubMedCentralCrossRefGoogle Scholar
  14. Borycz J, Pereira MF, Melani A, Rodrigues RJ, Köfalvi A, Panlilio L, Pedata F, Goldberg SR, Cunha RA, Ferré S (2007) Differential glutamate-dependent and glutamate-independent adenosine A1 receptor-mediated modulation of dopamine release in different striatal compartments. J Neurochem 101:355–363PubMedCrossRefGoogle Scholar
  15. Brianna Sheppard A, Gross SC, Pavelka SA, Hall MJ, Palmatier MI (2012) Caffeine increases the motivation to obtain non-drug reinforcers in rats. Drug Alcohol Depend 124:216–222PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brockwell NT, Eikelboom R, Beninger RJ (1991) Caffeine-induced place and taste conditioning: production of dose-dependent preference and aversion. Pharmacol, Biochem Behav 38:513–517CrossRefGoogle Scholar
  17. Brooks AM, Berns GS (2013) Aversive stimuli and loss in the mesocorticolimbic dopamine system. Trends Cogn Sci 17:281–286PubMedCrossRefGoogle Scholar
  18. Budney AJ, Lee DC, Juliano LM (2015) Evaluating the validity of caffeine use disorder. Curr Psychiatry Rep 17:74PubMedCrossRefGoogle Scholar
  19. Burt DR, Creese I, Snyder SH (1977) Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196:326–328PubMedCrossRefGoogle Scholar
  20. Calon F, Dridi M, Hornykiewicz O, Bédard PJ, Rajput AH, Di Paolo T (2004) Increased adenosine A2A receptors in the brain of Parkinson's disease patients with dyskinesias. Brain 127:1075–1084PubMedCrossRefGoogle Scholar
  21. Casas M, Ferré S, Cobos A, Grau JM, Jané F (1989) Relationship between rotational behaviour induced by apomorphine and caffeine in rats with unilateral lesion of the nigrostriatal pathway. Neuropharmacology 28:407–409PubMedCrossRefGoogle Scholar
  22. Casas M, Prat G, Robledo P, Barbanoj M, Kulisevsky J, Jané F (2000) Methylxanthines reverse the adipsic and aphagic syndrome induced by bilateral 6-hydroxydopamine lesions of the nigrostriatal pathway in rats. Pharmacol, Biochem Behav 66:257–263CrossRefGoogle Scholar
  23. Cauli O, Morelli M (2002) Subchronic caffeine administration sensitizes rats to the motor-activating effects of dopamine D(1) and D(2) receptor agonists. Psychopharmacology 162:246–254PubMedCrossRefGoogle Scholar
  24. Cauli O, Pinna A, Valentini V, Morelli M (2003) Subchronic caffeine exposure induces sensitization to caffeine and cross-sensitization to amphetamine ipsilateral turning behavior independent from dopamine release. Neuropsychopharmacology 28:1752–1759PubMedCrossRefGoogle Scholar
  25. Cauli O, Pinna A, Morelli M (2005) Subchronic intermittent caffeine administration to unilaterally 6-hydroxydopamine-lesioned rats sensitizes turning behaviour in response to dopamine D(1) but not D(2) receptor agonists. Behav Pharmacol 16:621–626PubMedCrossRefGoogle Scholar
  26. Chambers L, Mobini S, Yeomans MR (2007) Caffeine deprivation state modulates expression of acquired liking for caffeine-paired flavours. Q J Exp Psychol 60:1356–1366CrossRefGoogle Scholar
  27. Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26:2080–2087PubMedCrossRefGoogle Scholar
  28. Cole C, Jones L, McVeigh J, Kicman A, Syed Q, Bellis M (2011) Adulterants in illicit drugs: a review of empirical evidence. Drug Test Anal 3:89–96PubMedCrossRefGoogle Scholar
  29. Concas A, Cuccheddu T, Floris S, Mascia MP, Biggio G (1994) 2-Chloro-N6-cyclopentyladenosine (CCPA), an adenosine A1 receptor agonist, suppresses ethanol withdrawal syndrome in rats. Alcohol Alcohol 29:261–264PubMedGoogle Scholar
  30. Conlay LA, Conant JA, deBros F, Wurtman R (1997) Caffeine alters plasma adenosine levels. Nature 389:136PubMedCrossRefGoogle Scholar
  31. Creese I, Burt DR, Snyder SH (1977) Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity. Science 197:596–598PubMedCrossRefGoogle Scholar
  32. Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305:1014–1017PubMedCrossRefGoogle Scholar
  33. Dutertre S, Becker CM, Betz H (2012) Inhibitory glycine receptors: an update. J Biol Chem 287:40216–40223PubMedPubMedCentralCrossRefGoogle Scholar
  34. Elmenhorst D, Meyer PT, Winz OH, Matusch A, Ermert J, Coenen HH, Basheer R, Haas HL, Zilles K, Bauer A (2007) Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci 27:2410–2415PubMedCrossRefGoogle Scholar
  35. Elmenhorst D, Basheer R, McCarley RW, Bauer A (2009) Sleep deprivation increases A(1) adenosine receptor density in the rat brain. Brain Res 1258:53–58PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fedorchak PM, Mesita J, Plater SA, Brougham K (2002) Caffeine-reinforced conditioned flavor preferences in rats. Behav Neurosci 116:334–346PubMedCrossRefGoogle Scholar
  37. Fenu S, Morelli M (1998) Motor stimulant effects of caffeine in 6-hydroxydopamine-lesioned rats are dependent on previous stimulation of dopamine receptors: a different role of D1 and D2 receptors. Eur J Neurosci 10:1878–1884PubMedCrossRefGoogle Scholar
  38. Ferré S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105:1067–1079PubMedCrossRefGoogle Scholar
  39. Ferré S (2010) Role of the central ascending neurotransmitter systems in the psychostimulant effects of caffeine. J Alzheimers Dis 20(Suppl 1):S35–S49PubMedGoogle Scholar
  40. Ferré S (2015) The GPCR heterotetramer: challenging classical pharmacology. Trends Pharmacol Sci 36:145–152PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ferré S, Fuxe K (1992) Dopamine denervation leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum. Brain Res 594:124–130PubMedCrossRefGoogle Scholar
  42. Ferré S, O'Brien MC (2011) Alcohol and caffeine: the perfect storm. J Caffeine Res 1:153–162PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ferré S, Herrera-Marschitz M, Grabowska-Andén M, Ungerstedt U, Casas M, Andén NE (1991a) Postsynaptic dopamine/adenosine interaction: I. Adenosine analogues inhibit dopamine D2-mediated behaviour in short-term reserpinized mice. Eur J Pharmacol 192:25–30PubMedCrossRefGoogle Scholar
  44. Ferré S, Herrera-Marschitz M, Grabowska-Andén M, Casas M, Ungerstedt U, Andén NE (1991b) Postsynaptic dopamine/adenosine interaction: II. Postsynaptic dopamine agonism and adenosine antagonism of methylxanthines in short-term reserpinized mice. Eur J Pharmacol 192:31–37PubMedCrossRefGoogle Scholar
  45. Ferré S, Rubio A, Fuxe K (1991c) Stimulation of adenosine A2 receptors induces catalepsy. Neurosci Lett 130:162–164PubMedCrossRefGoogle Scholar
  46. Ferré S, von Euler G, Johansson B, Fredholm BB, Fuxe K (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci U S A 88:7238–7241PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ferré S, Fuxe K, von Euler G, Johansson B, Fredholm BB (1992) Adenosine-dopamine interactions in the brain. Neuroscience 51:501–512PubMedCrossRefGoogle Scholar
  48. Ferré S, O'Connor WT, Fuxe K, Ungerstedt U (1993) The striopallidal neuron: a main locus for adenosine-dopamine interactions in the brain. J Neurosci 13:5402–5406PubMedGoogle Scholar
  49. Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487PubMedCrossRefGoogle Scholar
  50. Ferré S, Popoli P, Giménez-Llort L, Rimondini R, Müller CE, Strömberg I, Ögren SO, Fuxe K (2001) Adenosine/dopamine interaction: implications for the treatment of Parkinson's disease. Parkinsonism Relat Disord 7:235–241PubMedCrossRefGoogle Scholar
  51. Ferré S, Ciruela F, Woods AS, Lluis C, Franco R (2007) Functional relevance of neurotransmitter receptor heteromers in the central nervous system. Trends Neurosci 30:440–446PubMedCrossRefGoogle Scholar
  52. Ferré S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T, Fuxe K, George SR, Javitch JA, Lohse MJ, Mackie K, Milligan G, Pfleger KD, Pin JP, Volkow ND, Waldhoer M, Woods AS, Franco R (2009) Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5:131–134PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ferré S, Casadó V, Devi LA, Filizola M, Jockers R, Lohse MJ, Milligan G, Pin JP, Guitart X (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 66:413–434PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ferré S, Bonaventura J, Tomasi D, Navarro G, Moreno E, Cortés A, Lluís C, Casadó V, Volkow ND (2015) Allosteric mechanisms within the adenosine A(2A)-dopamine D(2) receptor heterotetramer. Neuropharmacology. doi: 10.1016/j.neuropharm.2015.05.028 PubMedGoogle Scholar
  55. Filip M, Frankowska M, Zaniewska M, Przegaliński E, Muller CE, Agnati L, Franco R, Roberts DC, Fuxe K (2006) Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Res 1077:67–80PubMedCrossRefGoogle Scholar
  56. Fillmore MT (2003) Alcohol tolerance in humans is enhanced by prior caffeine antagonism of alcohol-induced impairment. Exp Clin Psychopharmacol 11:9–17PubMedCrossRefGoogle Scholar
  57. Frary CD, Johnson RK, Wang MQ (2005) Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc 105:110–113PubMedCrossRefGoogle Scholar
  58. Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133PubMedGoogle Scholar
  59. Fuxe K, Ungerstedt U (1974) Action of caffeine and theophyllamine on supersensitive dopamine receptors: considerable enhancement of receptor response to treatment with DOPA and dopamine receptor agonists. Med Biol 52:48–54PubMedGoogle Scholar
  60. Garrett BE, Griffiths RR (1997) The role of dopamine in the behavioral effects of caffeine in animals and humans. Pharmacol, Biochem Behav 57:533–541CrossRefGoogle Scholar
  61. Garrett BE, Holtzman SG (1995a) Does adenosine receptor blockade mediate caffeine-induced rotational behavior? J Pharmacol Exp Ther 274:207–214PubMedGoogle Scholar
  62. Garrett BE, Holtzman SG (1995b) The effects of dopamine agonists on rotational behavior in non-tolerant and caffeine-tolerant rats. Behav Pharmacol 6:843–851PubMedCrossRefGoogle Scholar
  63. Gasior M, Jaszyna M, Peters J, Goldberg SR (2000) Changes in the ambulatory activity and discriminative stimulus effects of psychostimulant drugs in rats chronically exposed to caffeine: effect of caffeine dose. J Pharmacol Exp Ther 295:1101–1111PubMedGoogle Scholar
  64. Gatch MB, Wallis CJ, Lal H (1999) The effects of adenosine ligands R-PIA and CPT on ethanol withdrawal. Alcohol 19:9–14PubMedCrossRefGoogle Scholar
  65. Gauvin DV, Criado JR, Moore KR, Holloway FA (1990) Potentiation of cocaine's discriminative effects by caffeine: a time-effect analysis. Pharmacol, Biochem Behav 36:195–197CrossRefGoogle Scholar
  66. Gerfen CR, Miyachi S, Paletzki R, Brown P (2002) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci 22:5042–5054PubMedGoogle Scholar
  67. Giménez-Llort L, Martínez E, Ferré S (1995) Dopamine-independent and adenosine-dependent mechanisms involved in the effects of N-methyl-D-aspartate on motor activity in mice. Eur J Pharmacol 275:171–177PubMedCrossRefGoogle Scholar
  68. Glickman SE, Schiff BB (1967) A biological theory of reinforcement. Psychol Rev 74:81–109PubMedCrossRefGoogle Scholar
  69. Górska AM, Gołembiowska K (2015) The role of adenosine A1 and A2A receptors in the caffeine effect on MDMA-induced DA and 5-HT release in the mouse striatum. Neurotox Res 27:229–245PubMedPubMedCentralCrossRefGoogle Scholar
  70. Griffiths RR, Woodson PP (1988) Reinforcing properties of caffeine: studies in humans and laboratory animals. Pharmacol, Biochem Behav 29:419–427CrossRefGoogle Scholar
  71. Guitart X, Navarro G, Moreno E, Yano H, Cai NS, Sánchez-Soto M, Kumar-Barodia S, Naidu YT, Mallol J, Cortés A, Lluís C, Canela EI, Casadó V, McCormick PJ, Ferré S (2014) Functional selectivity of allosteric interactions within G protein-coupled receptor oligomers: the dopamine D1-D3 receptor heterotetramer. Mol Pharmacol 86:417–429PubMedPubMedCentralCrossRefGoogle Scholar
  72. Halldner L, Adén U, Dahlberg V, Johansson B, Ledent C, Fredholm BB (2004) The adenosine A1 receptor contributes to the stimulatory, but not the inhibitory effect of caffeine on locomotion: a study in mice lacking adenosine A1 and/or A2A receptors. Neuropharmacology 46:1008–1017PubMedCrossRefGoogle Scholar
  73. Hasin DS, O'Brien CP, Auriacombe M, Borges G, Bucholz K, Budney A, Compton WM, Crowley T, Ling W, Petry NM, Schuckit M, Grant BF (2013) DSM-5 criteria for substance use disorders: recommendations and rationale. Am J Psychiatry 70:834–851CrossRefGoogle Scholar
  74. Herrera-Marschitz M, Forster C, Ungerstedt U (1985) Rotational behaviour elicited by intracerebral injections of apomorphine and pergolide in 6 hydroxy-dopamine-lesioned rats. I: Comparison between systemic and intrastriatal injections. Acta Physiol Scand 125:519–527PubMedCrossRefGoogle Scholar
  75. Herrera-Marschitz M, Casas M, Ungerstedt U (1988) Caffeine produces contralateral rotation in rats with unilateral dopamine denervation: comparisons with apomorphine-induced responses. Psychopharmacology 94:38–45PubMedCrossRefGoogle Scholar
  76. Hilbert ML, May CE, Griffin WC 3rd (2013) Conditioned reinforcement and locomotor activating effects of caffeine and ethanol combinations in mice. Pharmacol, Biochem Behav 110:168–173CrossRefGoogle Scholar
  77. Hines DJ, Haydon PG (2014) Astrocytic adenosine: from synapses to psychiatric disorders. Philos Trans R Soc Lond B Biol Sci 369:20130594PubMedPubMedCentralCrossRefGoogle Scholar
  78. Holly EN, Miczek KA (2016) Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacology 233:163–186PubMedCrossRefGoogle Scholar
  79. Holtzman SG, Finn IB (1988) Tolerance to behavioral effects of caffeine in rats. Pharmacol, Biochem Behav 29:411–418CrossRefGoogle Scholar
  80. Horger BA, Wellman PJ, Morien A, Davies BT, Schenk S (1991) Caffeine exposure sensitizes rats to the reinforcing effects of cocaine. Neuroreport 2:53–56PubMedCrossRefGoogle Scholar
  81. Howe MW, Tierney PL, Sandberg SG, Phillips PE, Graybiel AM (2013) Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500:575–579PubMedPubMedCentralCrossRefGoogle Scholar
  82. Howell LL, Landrum AM (1997) Effects of chronic caffeine administration on respiration and schedule-controlled behavior in rhesus monkeys. J Pharmacol Exp Ther 283:190–199PubMedGoogle Scholar
  83. Hsu CW, Chen CY, Wang CS, Chiu TH (2009) Caffeine and a selective adenosine A2A receptor antagonist induce reward and sensitization behavior associated with increased phospho-Thr75-DARPP-32 in mice. Psychopharmacology 204:313–325PubMedCrossRefGoogle Scholar
  84. Hsu CW, Wang CS, Chiu TH (2010) Caffeine and a selective adenosine A2A receptor antagonist induce sensitization and cross-sensitization behavior associated with increased striatal dopamine in mice. J Biomed Sci 17:4PubMedPubMedCentralCrossRefGoogle Scholar
  85. Huang RQ, Bell-Horner CL, Dibas MI, Covey DF, Drewe JA, Dillon GH (2001) Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: mechanism and site of action. J Pharmacol Exp Ther 298:986–995PubMedGoogle Scholar
  86. Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB, Urade Y, Hayaishi O (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8:858–859PubMedCrossRefGoogle Scholar
  87. Hurley MJ, Mash DC, Jenner P (2000) Adenosine A(2A) receptor mRNA expression in Parkinson's disease. Neurosci Lett 291:54–58PubMedCrossRefGoogle Scholar
  88. Ichise M, Kim YJ, Ballinger JR, Vines D, Erami SS, Tanaka F, Lang AE (1999) SPECT imaging of pre- and postsynaptic dopaminergic alterations in L-dopa-untreated PD. Neurology 52:1206–1214PubMedCrossRefGoogle Scholar
  89. Ikemoto S (2010) Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci Biobehav Rev 35:129–150PubMedPubMedCentralCrossRefGoogle Scholar
  90. Jacobson KA, von Lubitz DK, Daly JW, Fredholm BB (1996) Adenosine receptor ligands: differences with acute versus chronic treatment. Trends Pharmacol Sci 17:108–113PubMedPubMedCentralCrossRefGoogle Scholar
  91. Jain R, Holtzman SG (2005) Caffeine induces differential cross tolerance to the amphetamine-like discriminative stimulus effects of dopaminergic agonists. Brain Res Bull 65:415–421PubMedCrossRefGoogle Scholar
  92. James JE, Keane MA (2007) Caffeine, sleep and wakefulness: implications of new understanding about withdrawal reversal. Hum Psychopharmacol 22:549–558PubMedCrossRefGoogle Scholar
  93. James JE, Rogers PJ (2005) Effects of caffeine on performance and mood: withdrawal reversal is the most plausible explanation. Psychopharmacology 182:1–8PubMedCrossRefGoogle Scholar
  94. Jaszyna M, Gasior M, Shoaib M, Yasar S, Goldberg SR (1998) Behavioral effects of nicotine, amphetamine and cocaine under a fixed-interval schedule of food reinforcement in rats chronically exposed to caffeine. Psychopharmacology 140:257–271PubMedCrossRefGoogle Scholar
  95. Juliano LM, Evatt DP, Richards BD, Griffiths RR (2012) Characterization of individuals seeking treatment for caffeine dependence. Psychol Addict Behav 26:948–954PubMedPubMedCentralCrossRefGoogle Scholar
  96. Justinova Z, Ferre S, Segal PN, Antoniou K, Solinas M, Pappas LA, Highkin JL, Hockemeyer J, Munzar P, Goldberg SR (2003) Involvement of adenosine A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of cocaine and methamphetamine in rats. J Pharmacol Exp Ther 307:977–986PubMedCrossRefGoogle Scholar
  97. Justinova Z, Ferré S, Barnes C, Wertheim CE, Pappas LA, Goldberg SR, Le Foll B (2009) Effects of chronic caffeine exposure on adenosinergic modulation of the discriminative-stimulus effects of nicotine, methamphetamine, and cocaine in rats. Psychopharmacology 203:355–367PubMedPubMedCentralCrossRefGoogle Scholar
  98. Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev 16:223–244PubMedCrossRefGoogle Scholar
  99. Kanda T, Shiozaki S, Shimada J, Suzuki F, Nakamura J (1994) KF17837: a novel selective adenosine A2A receptor antagonist with anticataleptic activity. Eur J Pharmacol 256:263–268PubMedCrossRefGoogle Scholar
  100. Karcz-Kubicha M, Antoniou K, Terasmaa A, Quarta D, Solinas M, Justinova Z, Pezzola A, Reggio R, Müller CE, Fuxe K, Goldberg SR, Popoli P, Ferré S (2003) Involvement of adenosine A1 and A2A receptors in the motor effects of caffeine after its acute and chronic administration. Neuropsychopharmacology 28:1281–1291PubMedCrossRefGoogle Scholar
  101. Kendler KS, Myers JO, Gardner C (2006) Caffeine intake, toxicity and dependence and lifetime risk for psychiatric and substance use disorders: an epidemiologic and co-twin control analysis. Psychol Med 36:1717–1725PubMedCrossRefGoogle Scholar
  102. Khairnar A, Plumitallo A, Frau L, Schintu N, Morelli M (2010) Caffeine enhances astroglia and microglia reactivity induced by 3,4 methylenedioxymethamphetamine ('ecstasy') in mouse brain. Neurotox Res 17:435–439PubMedCrossRefGoogle Scholar
  103. Kim HF, Hikosaka O (2015) Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain 138:1776–1800PubMedCrossRefGoogle Scholar
  104. Kim DS, Palmiter RD (2003) Adenosine receptor blockade reverses hypophagia and enhances locomotor activity of dopamine-deficient mice. Proc Natl Acad Sci U S A 100:1346–1351PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kim Y, Bolortuya Y, Chen L, Basheer R, McCarley RW, Strecker RE (2012) Decoupling of sleepiness from sleep time and intensity during chronic sleep restriction: evidence for a role of the adenosine system. Sleep 35:861–869PubMedPubMedCentralCrossRefGoogle Scholar
  106. Klawans HL, Moses H 3rd, Beaulieu DM (1974) The influence of caffeine on d-amphetamine- and apomorphine-induced stereotyped behavior. Life Sci 14:1493–1500PubMedCrossRefGoogle Scholar
  107. Knapska E, Macias M, Mikosz M, Nowak A, Owczarek D, Wawrzyniak M, Pieprzyk M, Cymerman IA, Werka T, Sheng M, Maren S, Jaworski J, Kaczmarek L (2012) Functional anatomy of neural circuits regulating fear and extinction. Proc Natl Acad Sci U S A 109:17093–17098PubMedPubMedCentralCrossRefGoogle Scholar
  108. Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76:351–359PubMedCrossRefGoogle Scholar
  109. Lazarus M, Shen HY, Cherasse Y, Qu WM, Huang ZL, Bass CE, Winsky-Sommerer R, Semba K, Fredholm BB, Boison D, Hayaishi O, Urade Y, Chen JF (2011) Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J Neurosci 31:10067–10075PubMedPubMedCentralCrossRefGoogle Scholar
  110. Lazenka MF, Moeller FG, Negus SS (2015) Effects of caffeine and its metabolite paraxanthine on intracranial self-stimulation in male rats. Exp Clin Psychopharmacol 23:71–80PubMedPubMedCentralCrossRefGoogle Scholar
  111. Lehner KR, Baumann MH (2013) Psychoactive 'bath salts': compounds, mechanisms, and toxicities. Neuropsychopharmacology 38:243–244PubMedPubMedCentralCrossRefGoogle Scholar
  112. Leviton A (1992) Behavioral correlates of caffeine consumption by children. Clin Pediatr 31:742–750CrossRefGoogle Scholar
  113. Ljungberg T, Ungerstedt U (1976) Sensory inattention produced by 6-hydroxydopamine-induced degeneration of ascending dopamine neurons in the brain. Exp Neurol 53:585–600PubMedCrossRefGoogle Scholar
  114. López-Hill X, Prieto JP, Meikle MN, Urbanavicius J, Abin-Carriquiry JA, Prunell G, Umpiérrez E, Scorza MC (2011) Coca-paste seized samples characterization: chemical analysis, stimulating effect in rats and relevance of caffeine as a major adulterant. Behav Brain Res 221:134–141PubMedCrossRefGoogle Scholar
  115. Marczinski CA, Fillmore MT, Henges AL, Ramsey MA, Young CR (2013) Mixing an energy drink with an alcoholic beverage increases motivation for more alcohol in college students. Alcohol Clin Exp Res 37:276–283PubMedPubMedCentralCrossRefGoogle Scholar
  116. Marin MT, Zancheta R, Paro AH, Possi AP, Cruz FC, Planeta CS (2011) Comparison of caffeine-induced locomotor activity between adolescent and adult rats. Eur J Pharmacol 660:363–367PubMedCrossRefGoogle Scholar
  117. Marshall JF, Turner BH, Teitelbaum P (1971) Sensory neglect produced by lateral hypothalamic damage. Science 174:523–525PubMedCrossRefGoogle Scholar
  118. Marshall JF, Berrios N, Sawyer S (1980) Neostriatal dopamine and sensory inattention. J Comp Physiol Psychol 94:833–846PubMedCrossRefGoogle Scholar
  119. May CE, Haun HL, Griffin WC 3rd (2015) Sensitization and tolerance following repeated exposure to caffeine and alcohol in mice. Alcohol Clin Exp Res 39:1443–1452PubMedCrossRefGoogle Scholar
  120. McCarley RW (2007) Neurobiology of REM and NREM sleep. Sleep Med 8:302–330PubMedCrossRefGoogle Scholar
  121. McCutcheon JE, Ebner SR, Loriaux AL, Roitman MF (2012) Encoding of aversion by dopamine and the nucleus accumbens. Front Neurosci 6:137PubMedPubMedCentralCrossRefGoogle Scholar
  122. McKetin R, Coen A, Kaye S (2015) A comprehensive review of the effects of mixing caffeinated energy drinks with alcohol. Drug Alcohol Depend 151:15–30PubMedCrossRefGoogle Scholar
  123. Miller R, Beninger RJ (1991) On the interpretation of asymmetries of posture and locomotion produced with dopamine agonists in animals with unilateral depletion of striatal dopamine. Prog Neurobiol 36:229–256PubMedCrossRefGoogle Scholar
  124. Minor TR, Hanff TC (2015) Adenosine signaling in reserpine-induced depression in rats. Behav Brain Res 286:184–191PubMedCrossRefGoogle Scholar
  125. Misra AL, Vadlamani NL, Pontani RB (1986) Effect of caffeine on cocaine locomotor stimulant activity in rats. Pharmacol, Biochem Behav 24:761–764CrossRefGoogle Scholar
  126. Miyashita N, Hikosaka O, Kato M (1995) Visual hemineglect induced by unilateral striatal dopamine deficiency in monkeys. Neuroreport 6:1257–1260PubMedCrossRefGoogle Scholar
  127. Morelli M, Carta AR, Jenner P (2009) Adenosine A2A receptors and Parkinson's disease. Handb Exp Pharmacol 193:589–615PubMedCrossRefGoogle Scholar
  128. Morikawa H, Morrisett RA (2010) Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. Int Rev Neurobiol 91:235–288PubMedPubMedCentralCrossRefGoogle Scholar
  129. Moscarello JM, LeDoux JE (2013) Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions. J Neurosci 33:3815–3823PubMedPubMedCentralCrossRefGoogle Scholar
  130. Müller CE, Ferré S (2007) Blocking striatal adenosine A2A receptors: a new strategy for basal ganglia disorders. Recent Pat CNS. Drug Discov 2:1–21Google Scholar
  131. Mumford GK, Holtzman SG (1990) Methylxanthines elevate reinforcement threshold for electrical brain stimulation: role of adenosine receptors and phosphodiesterase inhibition. Brain Res 528:32–38PubMedCrossRefGoogle Scholar
  132. Mumford GK, Holtzman SG (1991) Do adenosinergic substrates mediate methylxanthine effects upon reinforcement thresholds for electrical brain stimulation in the rat? Brain Res 550:172–178PubMedCrossRefGoogle Scholar
  133. Mumford GK, Neill DB, Holtzman SG (1988) Caffeine elevates reinforcement threshold for electrical brain stimulation: tolerance and withdrawal changes. Brain Res 459:163–167PubMedCrossRefGoogle Scholar
  134. Munzar P, Justinova Z, Kutkat SW, Ferré S, Goldberg SR (2002) Adenosinergic modulation of the discriminative-stimulus effects of methamphetamine in rats. Psychopharmacology 161:348–355PubMedCrossRefGoogle Scholar
  135. Myers KP, Izbicki EV (2006) Reinforcing and aversive effects of caffeine measured by flavor preference conditioning in caffeine-naive and caffeine-acclimated rats. Physiol Behav 88:585–596PubMedCrossRefGoogle Scholar
  136. Navarro G, Aguinaga D, Moreno E, Hradsky J, Reddy PP, Cortés A, Mallol J, Casadó V, Mikhaylova M, Kreutz MR, Lluís C, Canela EI, McCormick PJ, Ferré S (2014) Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers. Chem Biol 21:1546–1556PubMedCrossRefGoogle Scholar
  137. Nehlig A, Daval JL, Debry G (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Brain Res Rev 17:139–170PubMedCrossRefGoogle Scholar
  138. Neve KA, Altar CA, Wong CA, Marshall JF (1984) Quantitative analysis of [3H]spiroperidol binding to rat forebrain sections: plasticity of neostriatal dopamine receptors after nigrostriatal injury. Brain Res 302:9–18PubMedCrossRefGoogle Scholar
  139. Nikodijević O, Jacobson KA, Daly JW (1993) Locomotor activity in mice during chronic treatment with caffeine and withdrawal. Pharmacol, Biochem Behav 44:199–216CrossRefGoogle Scholar
  140. Nunes EJ, Randall PA, Podurgiel S, Correa M, Salamone JD (2013) Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors. Neurosci Biobehav Rev 37:2015–2025PubMedCrossRefGoogle Scholar
  141. O'Brien MC, McCoy TP, Rhodes SD, Wagoner A, Wolfson M (2008) Caffeinated cocktails: energy drink consumption, high-risk drinking, and alcohol-related consequences among college students. Acad Emerg Med 15:453–460PubMedCrossRefGoogle Scholar
  142. O'Neill CE, LeTendre ML, Bachtell RK (2012) Adenosine A2A receptors in the nucleus accumbens bi-directionally alter cocaine seeking in rats. Neuropsychopharmacology 37:1245–1256PubMedPubMedCentralCrossRefGoogle Scholar
  143. O'Neill CE, Levis SC, Schreiner DC, Amat J, Maier SF, Bachtell RK (2015) Effects of adolescent caffeine consumption on cocaine sensitivity. Neuropsychopharmacology 40:813–821PubMedPubMedCentralCrossRefGoogle Scholar
  144. Orrú M, Guitart X, Karcz-Kubicha M, Solinas M, Justinova Z, Barodia SK, Zanoveli J, Cortes A, Lluis C, Casado V, Moeller FG, Ferré S (2013) Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans. Neuropharmacology 67:476–484PubMedCrossRefGoogle Scholar
  145. Palmiter RD (2008) Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann N Y Acad Sci 1129:35–46PubMedPubMedCentralCrossRefGoogle Scholar
  146. Panek LM, Swoboda C, Bendlin A, Temple JL (2013) Caffeine increases liking and consumption of novel-flavored yogurt. Psychopharmacology 227:425–436PubMedCrossRefGoogle Scholar
  147. Pardo M, Lopez-Cruz L, Valverde O, Ledent C, Baqi Y, Müller CE, Salamone JD, Correa M (2012) Adenosine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-based decision making in mice. Neuropharmacology 62:2068–2077PubMedCrossRefGoogle Scholar
  148. Parkinson FE, Xiong W, Zamzow CR, Chestley T, Mizuno T, Duckworth ML (2009) Transgenic expression of human equilibrative nucleoside transporter 1 in mouse neurons. J Neurochem 109:562–572PubMedCrossRefGoogle Scholar
  149. Peacock A, Pennay A, Droste N, Bruno R, Lubman DI (2014) 'High' risk? A systematic review of the acute outcomes of mixing alcohol with energy drinks. Addiction 109:1612–1633PubMedCrossRefGoogle Scholar
  150. Pereira M, Farrar AM, Hockemeyer J, Müller CE, Salamone JD, Morrell JI (2011) Effect of the adenosine A2A receptor antagonist MSX-3 on motivational disruptions of maternal behavior induced by dopamine antagonism in the early postpartum rat. Psychopharmacology 213:69–79PubMedPubMedCentralCrossRefGoogle Scholar
  151. Pinna A, Fenu S, Morelli M (2001) Motor stimulant effects of the adenosine A2A receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6-hydroxydopamine-lesioned rats. Synapse 9:233–238CrossRefGoogle Scholar
  152. Pinna A, Corsi C, Carta AR, Valentini V, Pedata F, Morelli M (2002) Modification of adenosine extracellular levels and adenosine A(2A) receptor mRNA by dopamine denervation. Eur J Pharmacol 446:75–82PubMedCrossRefGoogle Scholar
  153. Pollack AE, Turgeon SM, Fink JS (1997) Apomorphine priming alters the response of striatal outflow pathways to D2 agonist stimulation in 6-hydroxydopamine-lesioned rats. Neuroscience 79:79–93PubMedCrossRefGoogle Scholar
  154. Pollack AE, Dimitrov KD, Drake JD (2010) Prior treatment (priming) with caffeine sensitizes D2-dopamine-mediated contralateral rotational behavior in 6-hydroxydopamine-lesioned rats. Pharmacology 86:73–78PubMedCrossRefGoogle Scholar
  155. Popoli P, Giménez-Llort L, Pezzola A, Reggio R, Martínez E, Fuxe K, Ferré S (1996) Adenosine A1 receptor blockade selectively potentiates the motor effects induced by dopamine D1 receptor stimulation in rodents. Neurosci Lett 218:209–213PubMedCrossRefGoogle Scholar
  156. Popoli P, Reggio R, Pèzzola A (2000) Effects of SCH 58261, an adenosine A(2A) receptor antagonist, on quinpirole-induced turning in 6-hydroxydopamine-lesioned rats. Lack of tolerance after chronic caffeine intake. Neuropsychopharmacology 22:522–529PubMedCrossRefGoogle Scholar
  157. Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99:507–517PubMedCrossRefGoogle Scholar
  158. Prediger RD, da Silva GE, Batista LC, Bittencourt AL, Takahashi RN (2006) Activation of adenosine A1 receptors reduces anxiety-like behavior during acute ethanol withdrawal (hangover) in mice. Neuropsychopharmacology 31:2210–2220PubMedGoogle Scholar
  159. Prieto JP, Galvalisi M, López-Hill X, Meikle MN, Abin-Carriquiry JA, Scorza C (2015) Caffeine enhances and accelerates the expression of sensitization induced by coca paste indicating its relevance as a main adulterant. Am J Addict 24:475–481PubMedCrossRefGoogle Scholar
  160. Quarta D, Ferré S, Solinas M, You ZB, Hockemeyer J, Popoli P, Goldberg SR (2004a) Opposite modulatory roles for adenosine A1 and A2A receptors on glutamate and dopamine release in the shell of the nucleus accumbens. Effects of chronic caffeine exposure. J Neurochem 88:1151–1158PubMedCrossRefGoogle Scholar
  161. Quarta D, Borycz J, Solinas M, Patkar K, Hockemeyer J, Ciruela F, Lluis C, Franco R, Woods AS, Goldberg SR, Ferré S (2004b) Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-D-aspartate receptor stimulation. J Neurochem 91:873–880PubMedCrossRefGoogle Scholar
  162. Quiroz C, Orrú M, Rea W, Ciudad-Roberts A, Yepes G, Britt JP, Ferré S (2016) Local control of extracellular dopamine levels in the medial nucleus accumbens by a glutamatergic projection from the infralimbic cortex. J Neurosci. doi: 10.1523/jneurosci.2850-15.2016 PubMedGoogle Scholar
  163. Randall PA, Nunes EJ, Janniere SL, Stopper CM, Farrar AM, Sager TN, Baqi Y, Hockemeyer J, Müller CE, Salamone JD (2011) Stimulant effects of adenosine antagonists on operant behavior: differential actions of selective A2A and A1 antagonists. Psychopharmacology 216:173–186PubMedPubMedCentralCrossRefGoogle Scholar
  164. Reissig CJ, Strain EC, Griffiths RR (2009) Caffeinated energy drinks. A growing problem. Drug Alcohol Depend 99:1–10PubMedPubMedCentralCrossRefGoogle Scholar
  165. Rhoads DE, Huggler AL, Rhoads LJ (2011) Acute and adaptive motor responses to caffeine in adolescent and adult rats. Pharmacol, Biochem Behav 99:81–86CrossRefGoogle Scholar
  166. Richard JM, Castro DC, Difeliceantonio AG, Robinson MJ, Berridge KC (2013) Mapping brain circuits of reward and motivation: in the footsteps of Ann Kelley. Neurosci Biobehav Rev 37:1919–1931PubMedCrossRefGoogle Scholar
  167. Rimondini R, Ferré S, Ogren SO, Fuxe K (1997) Adenosine A2A agonists: a potential new type of atypical antipsychotic. Neuropsychopharmacology 117:82–91CrossRefGoogle Scholar
  168. Rimondini R, Ferré S, Giménez-Llort L, Ogren SO, Fuxe K (1998) Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioral responses in rats. Eur J Pharmacol 347:153–158PubMedCrossRefGoogle Scholar
  169. Robinson TE, Browman KE, Crombag HS, Badiani A (1998) Modulation of the induction or expression of psychostimulant sensitization by the circumstances surrounding drug administration. Neurosci Biobehav Rev 22:347–354PubMedCrossRefGoogle Scholar
  170. Schechter MD (1977) Caffeine potentiation of amphetamine: implications for hyperkinesis therapy. Pharmacol, Biochem Behav 6:359–361CrossRefGoogle Scholar
  171. Schenk S, Horger B, Snow S (1990) Caffeine preexposure sensitizes rats to the motor activating effects of cocaine. Behav Pharmacol 1:447–445PubMedGoogle Scholar
  172. Schenk S, Valadez A, Horger BA, Snow S, Wellman PJ (1994) Interactions between caffeine and cocaine in tests of self-administration. Behav Pharmacol 5:153–158PubMedCrossRefGoogle Scholar
  173. Schenk S, Worley CM, McNamara C, Valadez A (1996) Acute and repeated exposure to caffeine: effects on reinstatement of extinguished cocaine-taking behavior in rats. Psychopharmacology 126:17–23PubMedCrossRefGoogle Scholar
  174. Schiffmann SN, Jacobs O, Vanderhaeghen JJ (1991) Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J Neurochem 57:1062–1067PubMedCrossRefGoogle Scholar
  175. Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263PubMedCrossRefGoogle Scholar
  176. Seely KA, Patton AL, Moran CL, Womack ML, Prather PL, Fantegrossi WE, Radominska-Pandya A, Endres GW, Channell KB, Smith NH, McCain KR, James LP, Moran JH (2013) Forensic investigation of K2, Spice, and "bath salt" commercial preparations: a three-year study of new designer drug products containing synthetic cannabinoid, stimulant, and hallucinogenic compounds. Forensic Sci Int 233:416–422PubMedCrossRefGoogle Scholar
  177. Shiozaki S, Ichikawa S, Nakamura J, Kitamura S, Yamada K, Kuwana Y (1999) Actions of adenosine A2A receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP. Psychopharmacology 147:90–95PubMedCrossRefGoogle Scholar
  178. Simola N, Cauli O, Morelli M (2006) Sensitization to caffeine and cross-sensitization to amphetamine: influence of individual response to caffeine. Behav Brain Res 172:72–79PubMedCrossRefGoogle Scholar
  179. Solinas M, Ferré S, You ZB, Karcz-Kubicha M, Popoli P, Goldberg SR (2002) Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. J Neurosci 22:6321–6324PubMedGoogle Scholar
  180. Solinas M, Ferré S, Antoniou K, Quarta D, Justinova Z, Hockemeyer J, Pappas LA, Segal PN, Wertheim C, Müller CE, Goldberg SR (2005) Involvement of adenosine A1 receptors in the discriminative-stimulus effects of caffeine in rats. Psychopharmacology 179:576–586PubMedCrossRefGoogle Scholar
  181. Solinas M, Panlilio LV, Justinova Z, Yasar S, Goldberg SR (2006) Using drug-discrimination techniques to study the abuse-related effects of psychoactive drugs in rats. Nat Protoc 1:1194–1206PubMedCrossRefGoogle Scholar
  182. Starr BS, Starr MS, Kilpatrick IC (1987) Behavioural role of dopamine D1 receptors in the reserpine-treated mouse. Neuroscience 22:179–188PubMedCrossRefGoogle Scholar
  183. Steigerwald ES, Rusiniak KW, Eckel DL, O'Regan MH (1988) Aversive conditioning properties of caffeine in rats. Pharmacol, Biochem Behav 31:579–584CrossRefGoogle Scholar
  184. Strömberg I, Popoli P, Müller CE, Ferré S, Fuxe K (2000) Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatum. Eur J Neurosci 12:4033–4037PubMedCrossRefGoogle Scholar
  185. Szczypka MS, Kwok K, Brot MD, Marck BT, Matsumoto AM, Donahue BA, Palmiter RD (2001) Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 30:819–828PubMedCrossRefGoogle Scholar
  186. Szymusiak R, McGinty D (2008) Hypothalamic regulation of sleep and arousal. Ann NY Acad Sci 1129:275–286PubMedCrossRefGoogle Scholar
  187. Teitelbaum P, Epstein AN (1962) The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions. Psychol Rev 69:74–90PubMedCrossRefGoogle Scholar
  188. Temple JL (2009) Caffeine use in children: what we know, what we have left to learn, and why we should worry. Neurosci Biobehav Rev 33(6):793–806PubMedPubMedCentralCrossRefGoogle Scholar
  189. Tupala E, Tiihonen J (2004) Dopamine and alcoholism: neurobiological basis of ethanol abuse. Prog Neuropsychopharmacol Biol Psychiatry 28:1221–1247PubMedCrossRefGoogle Scholar
  190. Ungerstedt U (1971a) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367:1–48PubMedCrossRefGoogle Scholar
  191. Ungerstedt U (1971b) Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol Scand Suppl 367:49–68PubMedCrossRefGoogle Scholar
  192. Ungerstedt U (1971c) Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:69–93PubMedCrossRefGoogle Scholar
  193. Ungerstedt U (1971d) Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:95–122PubMedCrossRefGoogle Scholar
  194. Van Dort CJ, Baghdoyan HA, Lydic R (2009) Adenosine A(1) and A(2A) receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal. J Neurosci 29:871–881PubMedPubMedCentralCrossRefGoogle Scholar
  195. Vanattou-Saïfoudine N, McNamara R, Harkin A (2012) Caffeine provokes adverse interactions with 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') and related psychostimulants: mechanisms and mediators. Br J Pharmacol 167:946–959PubMedPubMedCentralCrossRefGoogle Scholar
  196. Varani K, Vincenzi F, Tosi A, Gessi S, Casetta I, Granieri G, Fazio P, Leung E, MacLennan S, Granieri E, Borea PA (2010) A2A adenosine receptor overexpression and functionality, as well as TNF-alpha levels, correlate with motor symptoms in Parkinson's disease. FASEB J 24:587–598PubMedCrossRefGoogle Scholar
  197. Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58PubMedCrossRefGoogle Scholar
  198. Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 13:728–733PubMedPubMedCentralCrossRefGoogle Scholar
  199. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F (2011) Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci U S A 108:15037–15042PubMedPubMedCentralCrossRefGoogle Scholar
  200. Volkow ND, Wang GJ, Logan J, Alexoff D, Fowler JS, Thanos PK, Wong C, Casado V, Ferre S, Tomasi D (2015) Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain. Transl Psychiatry 5, e549PubMedPubMedCentralCrossRefGoogle Scholar
  201. Voorn P, Vanderschuren LJ, Groenewegen HJ, Robbins TW, Pennartz CM (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27:468–474PubMedCrossRefGoogle Scholar
  202. White BC, Keller GE 3rd (1984) Caffeine pretreatment: enhancement and attenuation of d-amphetamine-induced activity. Pharmacol, Biochem Behav 20:383–386CrossRefGoogle Scholar
  203. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494PubMedCrossRefGoogle Scholar
  204. Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492PubMedCrossRefGoogle Scholar
  205. Worley CM, Valadez A, Schenk S (1994) Reinstatement of extinguished cocaine-taking behavior by cocaine and caffeine. Pharmacol, Biochem Behav 48:217–221CrossRefGoogle Scholar
  206. Yeomans MR, Spetch H, Rogers PJ (1998) Conditioned flavour preference negatively reinforced by caffeine in human volunteers. Psychopharmacology 137:401–409PubMedCrossRefGoogle Scholar
  207. Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476PubMedCrossRefGoogle Scholar
  208. Young R, Gabryszuk M, Glennon RA (1998) (-)Ephedrine and caffeine mutually potentiate one another's amphetamine-like stimulus effects. Pharmacol, Biochem Behav 61:169–173CrossRefGoogle Scholar
  209. Zancheta R, Possi AP, Planeta CS, Marin MT (2012) Repeated administration of caffeine induces either sensitization or tolerance of locomotor stimulation depending on the environmental context. Pharmacol Rep 64:70–77PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Authors and Affiliations

  1. 1.Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug AbuseNational Institutes of HealthBaltimoreUSA

Personalised recommendations