Skip to main content

Advertisement

Log in

Reduced vasopressin receptors activation mediates the anti-depressant effects of fluoxetine and venlafaxine in bulbectomy model of depression

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

In response to stress, corticotropin releasing hormone (CRH) and vasopressin (AVP) are released from the hypothalamus, activate their receptors (CRHR1, CRHR2 or AVPr1b), and synergistically act to induce adrenocorticotropic hormone (ACTH) release from the anterior pituitary. Overstimulation of this system has been frequently associated with major depression states.

Objective

The objective of the study is to assess the role of AVP and CRH receptors in fluoxetine and venlafaxine effects on the expression of depression-related behavior.

Methods

In an animal model of depression (olfactory bulbectomy in mice, OB), we evaluated the effects of fluoxetine or venlafaxine (both 10 mg/kg/day) chronic administration on depression-related behavior in the tail suspension test. Plasma levels of AVP, CRH, and ACTH were determined as well as participation of their receptors in the expression of depression related-behavior and gene expression of AVP and CRH receptors (AVPr1b, CRHR1, and CRHR2) in the pituitary gland.

Results

The expression of depressive-like behavior in OB animals was reversed by treatment with both antidepressants. Surprisingly, OB-saline mice exhibited increased AVP and ACTH plasma levels, with no alterations in CRH levels when compared to sham mice. Chronic fluoxetine or venlafaxine reversed these effects. In addition, a significant increase only in AVPr1b gene expression was found in OB-saline.

Conclusion

The antidepressant therapy used seems to be more likely related to a reduced activation of AVP rather than CRH receptors, since a positive correlation between AVP levels and depressive-like behavior was observed in OB animals. Furthermore, a full restoration of depressive behavior was observed in OB-fluoxetine- or venlafaxine-treated mice only when AVP was centrally administered but not CRH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilera G, Rabadan Diehl C (2000) Regulation of vasopressin V1b receptors in the anterior pituitary gland of the rat. Exp Physiol 85:19S–26S, Spec No

    Article  CAS  PubMed  Google Scholar 

  • Ahrens T, Deuschle M, Krumm B, Van Der Pompe G, Den Boer JA, Lederbogen F (2008) Pituitary-adrenal and sympathetic nervous system responses to stress in women remitted from recurrent major depression. Psychosom Med 70:461–467

    Article  PubMed  Google Scholar 

  • Anderson IM, Nutt DJ, Deakin JF, British Association for Psychopharmacology (2000) Evidence-based guidelines for treating depressive disorders with antidepressants: a revision of the 1993 British Association for Psychopharmacology guidelines. Journal of psychopharmacology 14:3–20

    Article  CAS  PubMed  Google Scholar 

  • Antoni FA (1993) Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Frontiers in neuroendocrinology 14:76–122

    Article  CAS  PubMed  Google Scholar 

  • Bank W (2004) The Global Burden of Disease. 2004 Update. Oxford University Press, Oxford

    Google Scholar 

  • Barden N (2004) Implication of the hypothalamic-pituitary-adrenal axis in the physiopathology of depression. Journal of psychiatry & neuroscience : JPN 29:185–193

    Google Scholar 

  • Binfare RW, Rosa AO, Lobato KR, Santos AR, Rodrigues AL (2009) Ascorbic acid administration produces an antidepressant-like effect: evidence for the involvement of monoaminergic neurotransmission. Progress in neuro-psychopharmacology & biological psychiatry 33:530–540

    Article  CAS  Google Scholar 

  • Brady LS, Gold PW, Herkenham M, Lynn AB, Whitfield HJ Jr (1992) The antidepressants fluoxetine, idazoxan and phenelzine alter corticotropin-releasing hormone and tyrosine hydroxylase mRNA levels in rat brain: therapeutic implications. Brain research 572:117–125

    Article  CAS  PubMed  Google Scholar 

  • Brady LS, Whitfield HJ Jr, Fox RJ, Gold PW, Herkenham M (1991) Long-term antidepressant administration alters corticotropin-releasing hormone, tyrosine hydroxylase, and mineralocorticoid receptor gene expression in rat brain. Therapeutic implications. The Journal of clinical investigation 87:831–837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brocardo PS, Budni J, Kaster MP, Santos AR, Rodrigues AL (2008) Folic acid administration produces an antidepressant-like effect in mice: evidence for the involvement of the serotonergic and noradrenergic systems. Neuropharmacology 54:464–473

    Article  CAS  PubMed  Google Scholar 

  • Cairncross KD, Cox B, Forster C, Wren AF (1979) Olfactory projection systems, drugs and behaviour: a review. Psychoneuroendocrinology 4:253–272

    Article  CAS  PubMed  Google Scholar 

  • Carpenter LL, Ross NS, Tyrka AR, Anderson GM, Kelly M, Price LH (2009) Dex/CRH test cortisol response in outpatients with major depression and matched healthy controls. Psychoneuroendocrinology 34:1208–1213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790

    Article  CAS  PubMed  Google Scholar 

  • Chaki S, Nakazato A, Kennis L, Nakamura M, Mackie C, Sugiura M, Vinken P, Ashton D, Langlois X, Steckler T (2004) Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278995/CRA0450. European journal of pharmacology 485:145–158

    Article  CAS  PubMed  Google Scholar 

  • De Oliveira RA, Cunha GM, Borges KD, De Bruin GS, Dos Santos Filho EA, Viana GS, De Bruin VM (2004) The effect of venlafaxine on behaviour, body weight and striatal monoamine levels on sleep-deprived female rats. Pharmacology, biochemistry, and behavior 79:499–506

    Article  PubMed  Google Scholar 

  • Dhir A, Kulkarni SK (2008) Venlafaxine reverses chronic fatigue-induced behavioral, biochemical and neurochemical alterations in mice. Pharmacology, biochemistry, and behavior 89:563–571

    Article  CAS  PubMed  Google Scholar 

  • Ellingrod VL, Perry PJ (1994) Venlafaxine: a heterocyclic antidepressant. Am J Hosp Pharm 51:3033–3046

    CAS  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates: compact 3rd. Accademic Press, New York, USA

    Google Scholar 

  • Frazer A (1997) Pharmacology of antidepressants. J Clin Psychopharmacol 17(Suppl 1):2S–18S

    Article  CAS  PubMed  Google Scholar 

  • Frisch P, Bilkei-Gorzo A, Racz I, Zimmer A (2010) Modulation of the CRH system by substance P/NKA in an animal model of depression. Behav Brain Res 213:103–108

    Article  CAS  PubMed  Google Scholar 

  • Gillies GE, Linton EA, Lowry PJ (1982) Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299:355–357

    Article  CAS  PubMed  Google Scholar 

  • Griebel G, Simiand J, Serradei Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand JP, Soubrie P (2002a) Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proceedings of the National Academy of Sciences of the United States of America 99:6370–6375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P, Geslin M, Scatton B, Maffrand JP, Soubrie P (2002b) 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylp henyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist. II. Characterization in rodent models of stress-related disorders. The Journal of pharmacology and experimental therapeutics 301:333–345

    Article  CAS  PubMed  Google Scholar 

  • Grigoriadis DE, Pearsall D, De Souza EB (1989) Effects of chronic antidepressant and benzodiazepine treatment on corticotropin-releasing-factor receptors in rat brain and pituitary. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 2:53–60

    Article  CAS  Google Scholar 

  • Heilig M, Ekman R (1995) Chronic parenteral antidepressant treatment in rats: unaltered levels and processing of neuropeptide Y (NPY) and corticotropin-releasing hormone (CRH). Neurochemistry international 26:351–355

    Article  CAS  PubMed  Google Scholar 

  • Holsboer F, Barden N (1996) Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocrine reviews 17:187–205

    Article  CAS  PubMed  Google Scholar 

  • Jancsar SM, Leonard BE (1984) The effect of (+/−)mianserin and its enantiomers on the behavioural hyperactivity of the olfactory-bulbectomized rat. Neuropharmacology 23:1065–1070

    Article  CAS  PubMed  Google Scholar 

  • Jesberger JA, Richardson JS (1988) Brain output dysregulation induced by olfactory bulbectomy: an approximation in the rat of major depressive disorder in humans? Int J Neurosci 38:241–265

    Article  CAS  PubMed  Google Scholar 

  • Kelly JP, Wrynn AS, Leonard BE (1997) The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther 74:299–316

    Article  CAS  PubMed  Google Scholar 

  • Kokras N, Sotiropoulos I, Pitychoutis PM, Almeida OF, Papadopoulou-Daifoti Z (2011) Citalopram-mediated anxiolysis and differing neurobiological responses in both sexes of a genetic model of depression. Neuroscience 194:62–71

    Article  CAS  PubMed  Google Scholar 

  • Liu ZC, Luo XN, Wang GH (2002) Corticotropin-releasing factor and major depression. Foreign Medical Sci (Section of Psychiatry) 2:156–158

    Google Scholar 

  • Machado DG, Kaster MP, Binfare RW, Dias M, Santos AR, Pizzolatti MG, Brighente IM, Rodrigues AL (2007) Antidepressant-like effect of the extract from leaves of Schinus molle L. in mice: evidence for the involvement of the monoaminergic system. Progress in neuro-psychopharmacology & biological psychiatry 31:421–428

    Article  CAS  Google Scholar 

  • Mar A, Spreekmeester E, Rochford J (2002) Fluoxetine-induced increases in open-field habituation in the olfactory bulbectomized rat depend on test aversiveness but not on anxiety. Pharmacology, biochemistry, and behavior 73:703–712

    Article  CAS  PubMed  Google Scholar 

  • Marar IE, Amico JA (1998) Vasopressin, oxytocin, corticotrophin-releasing factor, and sodium responses during fluoxetine administration in the rat. Endocrine 8:13–18

    Article  CAS  PubMed  Google Scholar 

  • Marcilhac A, Anglade G, Hery F, Siaud P (1999) Olfactory bulbectomy increases vasopressin, but not corticotropin-releasing hormone, content in the external layer of the median eminence of male rats. Neuroscience letters 262:89–92

    Article  CAS  PubMed  Google Scholar 

  • Merali Z, Du L, Hrdina P, Palkovits M, Faludi G, Poulter MO, Anisman H (2004) Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region. The Journal of neuroscience : the official journal of the Society for Neuroscience 24:1478–1485

    Article  CAS  Google Scholar 

  • Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet 349:1498–1504

    Article  CAS  PubMed  Google Scholar 

  • Nemeroff CB, Owens MJ (2004) Pharmacologic differences among the SSRIs: focus on monoamine transporters and the HPA axis. CNS Spectr 9:23–31

    PubMed  Google Scholar 

  • Nemeroff CB, Owens MJ, Bissette G, Andorn AC, Stanley M (1988) Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Archives of general psychiatry 45:577–579

    Article  CAS  PubMed  Google Scholar 

  • Nemeroff CB, Widerlov E, Bissette G, Walleus H, Karlsson I, Eklund K, Kilts CD, Loosen PT, Vale W (1984) Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226:1342–1344

    Article  CAS  PubMed  Google Scholar 

  • Noguchi S, Inukai T, Kuno T, Tanaka C (1992) The suppression of olfactory bulbectomy-induced muricide by antidepressants and antihistamines via histamine H1 receptor blocking. Physiology & behavior 51:1123–1127

    Article  CAS  Google Scholar 

  • Okuyama S, Chaki S, Kawashima N, Suzuki Y, Ogawa S, Nakazato A, Kumagai T, Okubo T, Tomisawa K (1999) Receptor binding, behavioral, and electrophysiological profiles of nonpeptide corticotropin-releasing factor subtype 1 receptor antagonists CRA1000 and CRA1001. The Journal of pharmacology and experimental therapeutics 289:926–935

    CAS  PubMed  Google Scholar 

  • Poretti MB, Rask-Andersen M, Kumar P, Rubiales de Barioglio S, Fiol de Cuneo M, Schioth HB, Carlini VP (2015) Ghrelin effects expression of several genes associated with depression-like behavior. Progress in neuro-psychopharmacology & biological psychiatry 56:227–234

    Article  CAS  Google Scholar 

  • Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60:436–444

    Article  CAS  PubMed  Google Scholar 

  • Rabadan-Diehl C, Lolait SJ, Aguilera G (1995) Regulation of pituitary vasopressin V1b receptor mRNA during stress in the rat. Journal of neuroendocrinology 7:903–910

    Article  CAS  PubMed  Google Scholar 

  • Redrobe JP, Bourin M, Colombel MC, Baker GB (1998) Dose-dependent noradrenergic and serotonergic properties of venlafaxine in animal models indicative of antidepressant activity. Psychopharmacology 138:1–8

    Article  CAS  PubMed  Google Scholar 

  • Richardson JS (1991) Animal models of depression reflect changing views on the essence and etiology of depressive disorders in humans. Progress in neuro-psychopharmacology & biological psychiatry 15:199–204

    Article  CAS  Google Scholar 

  • Rivier C, Rivier J, Mormede P, Vale W (1984) Studies of the nature of the interaction between vasopressin and corticotropin-releasing factor on adrenocorticotropin release in the rat. Endocrinology 115:882–886

    Article  CAS  PubMed  Google Scholar 

  • Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. The American journal of psychiatry 163:1905–1917

    Article  PubMed  Google Scholar 

  • Scott LV, Dinan TG (1998) Vasopressin and the regulation of hypothalamic-pituitary-adrenal axis function: implications for the pathophysiology of depression. Life sciences 62:1985–1998

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Watanabe S, Liou SY, Ueki S (1983) Effects of adrenergic blockers on the inhibition of muricide by desipramine and noradrenaline injected into the amygdala in olfactory bulbectomized rats. Pharmacology, biochemistry, and behavior 18:203–207

    Article  CAS  PubMed  Google Scholar 

  • Song C, Leonard BE (2005) The olfactory bulbectomised rat as a model of depression. Neuroscience and biobehavioral reviews 29:627–647

    Article  PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  • Stewart LQ, Roper JA, Young WS 3rd, O’Carroll AM, Lolait SJ (2008) Pituitary-adrenal response to acute and repeated mild restraint, forced swim and change in environment stress in arginine vasopressin receptor 1b knockout mice. Journal of neuroendocrinology 20:597–605

    Article  CAS  PubMed  Google Scholar 

  • Stout SC, Owens MJ, Nemeroff CB (2002) Regulation of corticotropin-releasing factor neuronal systems and hypothalamic-pituitary-adrenal axis activity by stress and chronic antidepressant treatment. The Journal of pharmacology and experimental therapeutics 300:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Swiergiel AH, Leskov IL, Dunn AJ (2008) Effects of chronic and acute stressors and CRF on depression-like behavior in mice. Behav Brain Res 186:32–40

    Article  CAS  PubMed  Google Scholar 

  • Teter CJ, Kando JC, Wells BG (2008) Major depressive disorder. In: DiPiro RLTJT, Yee GC, Matke GR, Wells BG, Posey LM (eds) Pharmacotherapy: A Pathophysiologic Approach. The McGraw-Hill Companies, Inc., Columbus, OH, USA

    Google Scholar 

  • Tizabi Y, Skofitsch G, Jacobowitz DM (1985) Effect of chronic reserpine and desmethylimipramine treatment on CRF-like immunoreactivity of discrete brain areas of rat. Brain research 335:389–391

    Article  CAS  PubMed  Google Scholar 

  • Uriguen L, Arteta D, Diez-Alarcia R, Ferrer-Alcon M, Diaz A, Pazos A, Meana JJ (2008) Gene expression patterns in brain cortex of three different animal models of depression. Genes Brain Behav 7:649–658

    Article  CAS  PubMed  Google Scholar 

  • Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, Prins GS, Perrin M, Vale W, Sawchenko PE (2000) Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 428:191–212

    Article  PubMed  Google Scholar 

  • Weingartner H, Silberman E (1982) Models of cognitive impairment: cognitive changes in depression. Psychopharmacology bulletin 18:27–42

    CAS  PubMed  Google Scholar 

  • Wong ML, Licinio J (2001) Research and treatment approaches to depression. Nature reviews Neuroscience 2:343–351

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Pan YJ, Yin ZK, Hai GF, Lu L, Zhao Y, Wang DX, Wang H, Wang G (2012) Effect of arginine vasopressin on the behavioral activity in the behavior despair depression rat model. Neuropeptides 46:141–149

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from CONICET (Consejo Nacional de Investigación Científica y Técnica), SECyT-UNC (Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba), and the Swedish Research Council (VR, Medicine). We thank Grupo Pilar—GEPSA for the donation of the animals’ pelleted food and GADOR S.A. for the donation of fluoxetine and venlafaxine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariela F. Perez or Valeria Paola Carlini.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Marta Fiol de Cuneo, Mariela F. Perez, and Valeria Paola Carlini are established investigators from CONICET

Mariela F. Perez and Valeria Paola Carlini are joint last authors

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poretti, M.B., Sawant, R.S., Rask-Andersen, M. et al. Reduced vasopressin receptors activation mediates the anti-depressant effects of fluoxetine and venlafaxine in bulbectomy model of depression. Psychopharmacology 233, 1077–1086 (2016). https://doi.org/10.1007/s00213-015-4187-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4187-4

Keywords

Navigation