Advertisement

Psychopharmacology

, Volume 233, Issue 5, pp 751–760 | Cite as

Blunted striatal response to monetary reward anticipation during smoking abstinence predicts lapse during a contingency-managed quit attempt

  • Maggie M. SweitzerEmail author
  • Charles F. Geier
  • Rachel Denlinger
  • Erika E. Forbes
  • Bethany R. Raiff
  • Jesse Dallery
  • F. J. McClernon
  • Eric C. Donny
Original Investigation

Abstract

Rationale

Tobacco smoking is associated with dysregulated reward processing within the striatum, characterized by hypersensitivity to smoking rewards and hyposensitivity to non-smoking rewards. This bias toward smoking reward at the expense of alternative rewards is further exacerbated by deprivation from smoking, which may contribute to difficulty maintaining abstinence during a quit attempt.

Objective

We examined whether abstinence-induced changes in striatal processing of rewards predicted lapse likelihood during a quit attempt supported by contingency management (CM), in which abstinence from smoking was reinforced with money.

Methods

Thirty-six non-treatment-seeking smokers participated in two functional MRI (fMRI) sessions, one following 24-h abstinence and one following smoking as usual. During each scan, participants completed a rewarded guessing task designed to elicit striatal activation in which they could earn smoking and monetary rewards delivered after the scan. Participants then engaged in a 3-week CM-supported quit attempt.

Results

As previously reported, 24-h abstinence was associated with increased striatal activation in anticipation of smoking reward and decreased activation in anticipation of monetary reward. Individuals exhibiting greater decrements in right striatal activation to monetary reward during abstinence (controlling for activation during non-abstinence) were more likely to lapse during CM (p < 0.025), even when controlling for other predictors of lapse outcome (e.g., craving); no association was seen for smoking reward.

Conclusions

These results are consistent with a growing number of studies indicating the specific importance of disrupted striatal processing of non-drug reward in nicotine dependence and highlight the importance of individual differences in abstinence-induced deficits in striatal function for smoking cessation.

Keywords

Smoking Nicotine Reward Ventral striatum fMRI Relapse Abstinence Withdrawal Cessation Contingency management 

Notes

Acknowledgments

This research was supported by NIH grant (DA027441) to ECD. Maggie Sweitzer was supported by NSF IGERT award (0549352) and the Center for the Neural Basis of Cognition.

Compliance with ethical standard

Conflict of interest

The authors have no conflicts of interest to report.

References

  1. Addicott MA, Baranger DA, Kozink RV, Smoski MJ, Dichter GS, McClernon FJ (2012) Smoking withdrawal is associated with increases in brain activation during decision making and reward anticipation: a preliminary study. Psychopharmacology 219:563–73. doi: 10.1007/s00213-011-2404-3 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Alessi SM, Badger GJ, Higgins ST (2004) An experimental examination of the initial weeks of abstinence in cigarette smokers. Exp Clin Psychopharmacol 12:276–87. doi: 10.1037/1064-1297.12.4.276 CrossRefPubMedGoogle Scholar
  3. Attwood AS, Penton-Voak IS, Munafo MR (2009) Effects of acute nicotine administration on ratings of attractiveness of facial cues. Nicotine Tob Res 11:44–8. doi: 10.1093/ntr/ntn006 PubMedGoogle Scholar
  4. Bassareo V, Di Chiara G (1999) Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. Eur J Neurosci 11:4389–97CrossRefPubMedGoogle Scholar
  5. Beck A, Schlagenhauf F, Wustenberg T, Hein J, Kienast T, Kahnt T, Schmack K, Hagele C, Knutson B, Heinz A, Wrase J (2009) Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biol Psychiatry 66:734–42. doi: 10.1016/j.biopsych.2009.04.035 CrossRefPubMedGoogle Scholar
  6. Besheer J, Bevins RA (2003) Impact of nicotine withdrawal on novelty reward and related behaviors. Behav Neurosci 117:327–40CrossRefPubMedGoogle Scholar
  7. Bold KW, Yoon H, Chapman GB, McCarthy DE (2013) Factors predicting smoking in a laboratory-based smoking-choice task. Exp Clin Psychopharmacol 21:133–43. doi: 10.1037/a0031559 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Breslau N, Peterson EL, Schultz LR, Chilcoat HD, Andreski P (1998) Major depression and stages of smoking. A longitudinal investigation. Arch Gen Psychiatry 55:161–6. doi: 10.1016/j.biopsych.2009.10.029 CrossRefPubMedGoogle Scholar
  9. Buhler M, Vollstadt-Klein S, Kobiella A, Budde H, Reed LJ, Braus DF, Buchel C, Smolka MN (2010) Nicotine dependence is characterized by disordered reward processing in a network driving motivation. Biol Psychiatry 67:745–52. doi: 10.1016/j.biopsych.2009.10.029 CrossRefPubMedGoogle Scholar
  10. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafo MR (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience 14:365–76CrossRefPubMedGoogle Scholar
  11. CDC (2002) Annual smoking attributable mortality, years of potential life lost, and economic costs—United States, 1995-1999. Morbidity and Mortality Weekly Report 51:300–303Google Scholar
  12. CDC (2011) Tobacco use: targeting the nation’s leading killer. At a glance 2011Google Scholar
  13. Chaudhri N, Caggiula AR, Donny EC, Palmatier MI, Liu X, Sved AF (2006) Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology 184:353–66CrossRefPubMedGoogle Scholar
  14. Dallery J, Glenn IM, Raiff BR (2007) An Internet-based abstinence reinforcement treatment for cigarette smoking. Drug Alcohol Depend 86:230–8. doi: 10.1016/j.drugalcdep.2006.06.013 CrossRefPubMedGoogle Scholar
  15. David SP, Munafo MR, Johansen-Berg H, Smith SM, Rogers RD, Matthews PM, Walton RT (2005) Ventral striatum/nucleus accumbens activation to smoking-related pictorial cues in smokers and nonsmokers: a functional magnetic resonance imaging study. Biol Psychiatry 58:488–94PubMedCentralCrossRefPubMedGoogle Scholar
  16. Dawkins L, Powell JH, West R, Powell J, Pickering A (2006) A double-blind placebo controlled experimental study of nicotine: I—effects on incentive motivation. Psychopharmacology (Berl) 189:355–67CrossRefGoogle Scholar
  17. Delgado MR, Nystrom LE, Fissell C, Noll DC, Fiez JA (2000) Tracking the hemodynamic responses to reward and punishment in the striatum. J Neurophysiol 84:3072–7PubMedGoogle Scholar
  18. Donny EC, Chaudhri N, Caggiula AR, Evans-Martin FF, Booth S, Gharib MA, Clements LA, Sved AF (2003) Operant responding for a visual reinforcer in rats is enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement. Psychopharmacology 169:68–76CrossRefPubMedGoogle Scholar
  19. Dunn KE, Sigmon SC, Thomas CS, Heil SH, Higgins ST (2008) Voucher-based contingent reinforcement of smoking abstinence among methadone-maintained patients: a pilot study. J Appl Behav Anal 41:527–38PubMedCentralCrossRefPubMedGoogle Scholar
  20. Forbes EE, Hariri AR, Martin SL, Silk JS, Moyles DL, Fisher PM, Brown SM, Ryan ND, Birmaher B, Axelson DA, Dahl RE (2009) Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. Am J Psychiatry 166:64–73. doi: 10.1176/appi.ajp.2008.07081336 PubMedCentralCrossRefPubMedGoogle Scholar
  21. Forbes EE, Olino TM, Ryan ND, Birmaher B, Axelson D, Moyles DL, Dahl RE (2010) Reward-related brain function as a predictor of treatment response in adolescents with major depressive disorder. Cogn Affect Behav Neurosci 10:107–18. doi: 10.3758/CABN.10.1.107 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Forbes EE, Phillips ML, Silk JS, Ryan ND, Dahl RE (2011) Neural systems of threat processing in adolescents: role of pubertal maturation and relation to measures of negative affect. Dev Neuropsychol 36:429–52. doi: 10.1080/87565641.2010.550178 PubMedCentralCrossRefPubMedGoogle Scholar
  23. Forbes EE, Dahl RE, Almeida JR, Ferrell RE, Nimgaonkar VL, Mansour H, Sciarrillo SR, Holm SM, Rodriguez EE, Phillips ML (2012) PER2 rs2304672 polymorphism moderates circadian-relevant reward circuitry activity in adolescents. Biol Psychiatry 71:451–7. doi: 10.1016/j.biopsych.2011.10.012 PubMedCentralCrossRefPubMedGoogle Scholar
  24. Franklin TR, Wang Z, Wang J, Sciortino N, Harper D, Li Y, Ehrman R, Kampman K, O’Brien CP, Detre JA, Childress AR (2007) Limbic activation to cigarette smoking cues independent of nicotine withdrawal: a perfusion fMRI study. Neuropsychopharmacology 32:2301–9. doi: 10.1038/sj.npp.1301371 CrossRefPubMedGoogle Scholar
  25. Freeman TP, Morgan CJ, Beesley T, Curran HV (2012) Drug cue induced overshadowing: selective disruption of natural reward processing by cigarette cues amongst abstinent but not satiated smokers. Psychol Med 42:161–71. doi: 10.1017/S0033291711001139 CrossRefPubMedGoogle Scholar
  26. Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, Salmeron BJ, Risinger R, Kelley D, Stein EA (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157:1789–98CrossRefPubMedGoogle Scholar
  27. Geier CF, Sweitzer MM, Denlinger R, Sparacino G, Donny EC (2014) Abstinent adult daily smokers show reduced anticipatory but elevated saccade-related brain responses during a rewarded antisaccade task. Psychiatry Res 223:140–7. doi: 10.1016/j.pscychresns.2014.04.007 CrossRefPubMedGoogle Scholar
  28. Glenn IM, Dallery J (2007) Effects of internet-based voucher reinforcement and a transdermal nicotine patch on cigarette smoking. J Appl Behav Anal 40:1–13PubMedCentralCrossRefPubMedGoogle Scholar
  29. Goldstein RZ, Alia-Klein N, Tomasi D, Zhang L, Cottone LA, Maloney T, Telang F, Caparelli EC, Chang L, Ernst T, Samaras D, Squires NK, Volkow ND (2007) Is decreased prefrontal cortical sensitivity to monetary reward associated with impaired motivation and self-control in cocaine addiction? Am J Psychiatry 164:43–51. doi: 10.1176/appi.ajp.164.1.43 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Goldstein RZ, Tomasi D, Alia-Klein N, Honorio Carrillo J, Maloney T, Woicik PA, Wang R, Telang F, Volkow ND (2009) Dopaminergic response to drug words in cocaine addiction. J Neurosci 29:6001–6. doi: 10.1523/JNEUROSCI.4247-08.2009 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Grusser SM, Wrase J, Klein S, Hermann D, Smolka MN, Ruf M, Weber-Fahr W, Flor H, Mann K, Braus DF, Heinz A (2004) Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology 175:296–302. doi: 10.1007/s00213-004-1828-4 CrossRefPubMedGoogle Scholar
  32. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO (1991) The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict 86:1119–27CrossRefPubMedGoogle Scholar
  33. Heinz A, Siessmeier T, Wrase J, Hermann D, Klein S, Grusser SM, Flor H, Braus DF, Buchholz HG, Grunder G, Schreckenberger M, Smolka MN, Rosch F, Mann K, Bartenstein P (2004) Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry 161:1783–9. doi: 10.1176/appi.ajp.161.10.1783 CrossRefPubMedGoogle Scholar
  34. Higgins ST, Heil SH, Solomon LJ, Bernstein IM, Lussier JP, Abel RL, Lynch ME, Badger GJ (2004) A pilot study on voucher-based incentives to promote abstinence from cigarette smoking during pregnancy and postpartum. Nicotine Tob Res 6:1015–20CrossRefPubMedGoogle Scholar
  35. Hoenig JM, Heisey DM (2001) The abuse of power: the pervasive fallacy of power calculations for data analysis. The American Statistician 55:1–6CrossRefGoogle Scholar
  36. Hughes JR, Hatsukami D (1986) Signs and symptoms of tobacco withdrawal. Arch Gen Psychiatry 43:289–94CrossRefPubMedGoogle Scholar
  37. Hughes JR, Shiffman S, Callas P, Zhang J (2003) A meta-analysis of the efficacy of over-the-counter nicotine replacement. Tob Control 12:21–7PubMedCentralCrossRefPubMedGoogle Scholar
  38. Janes AC, Pizzagalli DA, Richardt S, de BFB, Chuzi S, Pachas G, Culhane MA, Holmes AJ, Fava M, Evins AE, Kaufman MJ (2010) Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biol Psychiatry 67:722–9. doi: 10.1016/j.biopsych.2009.12.034 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Kahnt T, Heinzle J, Park SQ, Haynes JD (2010) The neural code of reward anticipation in human orbitofrontal cortex. Proc Natl Acad Sci USA 107:6010–5. doi: 10.1073/pnas.0912838107 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Knutson B, Fong GW, Adams CM, Varner JL, Hommer D (2001) Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12:3683–7CrossRefPubMedGoogle Scholar
  41. Kollins SH, McClernon FJ, Fuemmeler BF (2005) Association between smoking and attention-deficit/hyperactivity disorder symptoms in a population-based sample of young adults. Arch Gen Psychiatry 62:1142–7. doi: 10.1001/archpsyc.62.10.1142 CrossRefPubMedGoogle Scholar
  42. Koob GF, Le Moal M (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci 8:1442–4. doi: 10.1038/nn1105-1442 CrossRefPubMedGoogle Scholar
  43. Lessov-Schlaggar CN, Lepore RL, Kristjansson SD, Schlaggar BL, Barnes KA, Petersen SE, Madden PA, Heath AC, Barch DM (2013) Functional neuroimaging study in identical twin pairs discordant for regular cigarette smoking. Addict Biol 18:98–108. doi: 10.1111/j.1369-1600.2012.00435.x PubMedCentralCrossRefPubMedGoogle Scholar
  44. Leventhal AM, Munafo M, Tidey JW, Sussman S, Monterosso JR, Sun P, Kahler CW (2012) Anhedonia predicts altered processing of happy faces in abstinent cigarette smokers. Psychopharmacology (Berl) 222:343–51. doi: 10.1007/s00213-012-2649-5 CrossRefGoogle Scholar
  45. Luo S, Ainslie G, Giragosian L, Monterosso JR (2011) Striatal hyposensitivity to delayed rewards among cigarette smokers. Drug Alcohol Depend 116:18–23. doi: 10.1016/j.drugalcdep.2010.11.012 PubMedCentralCrossRefPubMedGoogle Scholar
  46. MacPherson L, Tull MT, Matusiewicz AK, Rodman S, Strong DR, Kahler CW, Hopko DR, Zvolensky MJ, Brown RA, Lejuez CW (2010) Randomized controlled trial of behavioral activation smoking cessation treatment for smokers with elevated depressive symptoms. J Consult Clin Psychol 78:55–61. doi: 10.1037/a0017939 PubMedCentralCrossRefPubMedGoogle Scholar
  47. Martin-Soelch C, Chevalley AF, Kunig G, Missimer J, Magyar S, Mino A, Schultz W, Leenders KL (2001) Changes in reward-induced brain activation in opiate addicts. Eur J Neurosci 14:1360–8CrossRefPubMedGoogle Scholar
  48. Martin-Soelch C, Missimer J, Leenders KL, Schultz W (2003) Neural activity related to the processing of increasing monetary reward in smokers and nonsmokers. Eur J Neurosci 18:680–8CrossRefPubMedGoogle Scholar
  49. McClernon FJ, Hiott FB, Huettel SA, Rose JE (2005) Abstinence-induced changes in self-report craving correlate with event-related FMRI responses to smoking cues. Neuropsychopharmacology 30:1940–7PubMedCentralCrossRefPubMedGoogle Scholar
  50. O’Doherty JP (2004) Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol 14:769–76. doi: 10.1016/j.conb.2004.10.016 CrossRefPubMedGoogle Scholar
  51. O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304:452–4. doi: 10.1126/science.1094285 CrossRefPubMedGoogle Scholar
  52. Peters J, Bromberg U, Schneider S, Brassen S, Menz M, Banaschewski T, Conrod PJ, Flor H, Gallinat J, Garavan H, Heinz A, Itterman B, Lathrop M, Martinot JL, Paus T, Poline JB, Robbins TW, Rietschel M, Smolka M, Strohle A, Struve M, Loth E, Schumann G, Buchel C (2011) Lower ventral striatal activation during reward anticipation in adolescent smokers. Am J Psychiatry 168:540–9. doi: 10.1176/appi.ajp.2010.10071024 CrossRefPubMedGoogle Scholar
  53. Plichta MM, Schwarz AJ, Grimm O, Morgen K, Mier D, Haddad L, Gerdes AB, Sauer C, Tost H, Esslinger C, Colman P, Wilson F, Kirsch P, Meyer-Lindenberg A (2012) Test-retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery. NeuroImage 60:1746–58CrossRefPubMedGoogle Scholar
  54. Powell J, Dawkins L, Davis RE (2002a) Smoking, reward responsiveness, and response inhibition: tests of an incentive motivational model. Biol Psychiatry 51:151–63CrossRefPubMedGoogle Scholar
  55. Powell J, Tait S, Lessiter J (2002b) Cigarette smoking and attention to signals of reward and threat in the Stroop paradigm. Addiction 97:1163–70CrossRefPubMedGoogle Scholar
  56. Powell JH, Pickering AD, Dawkins L, West R, Powell JF (2004) Cognitive and psychological correlates of smoking abstinence, and predictors of successful cessation. Addict Behav 29:1407–26CrossRefPubMedGoogle Scholar
  57. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–91CrossRefPubMedGoogle Scholar
  58. Roll JM, Higgins ST (2000) A within-subject comparison of three different schedules of reinforcement of drug abstinence using cigarette smoking as an exemplar. Drug Alcohol Depend 58:103–9CrossRefPubMedGoogle Scholar
  59. Roll JM, Higgins ST, Badger GJ (1996) An experimental comparison of three different schedules of reinforcement of drug abstinence using cigarette smoking as an exemplar. J Appl Behav Anal 29:495–504. doi: 10.1901/jaba.1996.29-495, quiz 504-5PubMedCentralCrossRefPubMedGoogle Scholar
  60. Rose EJ, Ross TJ, Salmeron BJ, Lee M, Shakleya DM, Huestis M, Stein EA (2012) Chronic exposure to nicotine is associated with reduced reward-related activity in the striatum but not the midbrain. Biol Psychiatry 71:206–13. doi: 10.1016/j.biopsych.2011.09.013 PubMedCentralCrossRefPubMedGoogle Scholar
  61. Rose EJ, Ross TJ, Salmeron BJ, Lee M, Shakleya DM, Huestis MA, Stein EA (2013) Acute nicotine differentially impacts anticipatory valence- and magnitude-related striatal activity. Biol Psychiatry 73:280–8. doi: 10.1016/j.biopsych.2012.06.034 CrossRefPubMedGoogle Scholar
  62. Schultz W (2000) Multiple reward signals in the brain. Nat Rev Neurosci 1:199–207. doi: 10.1038/35044563 CrossRefPubMedGoogle Scholar
  63. Shiffman SM, Jarvik ME (1976) Smoking withdrawal symptoms in two weeks of abstinence. Psychopharmacology (Berl) 50:35–9CrossRefGoogle Scholar
  64. Sweitzer MM, Denlinger RL, Donny EC (2013a) Dependence and withdrawal-induced craving predict abstinence in an incentive-based model of smoking relapse. Nicoting Tob Res 15:36–43. doi: 10.1093/ntr/nts080 CrossRefGoogle Scholar
  65. Sweitzer MM, Geier CF, Joel DL, McGurrin P, Denlinger RL, Forbes EE, Donny EC (2013b) Dissociated effects of anticipating smoking versus monetary reward in the caudate as a function of smoking abstinence. Biol Psychiatry 76:681–688. doi: 10.1016/j.biopsych.2013.11.013 PubMedCentralCrossRefPubMedGoogle Scholar
  66. Thiel KJ, Sanabria F, Neisewander JL (2009) Synergistic interaction between nicotine and social rewards in adolescent male rats. Psychopharmacology 204:391–402. doi: 10.1007/s00213-009-1470-2 PubMedCentralCrossRefPubMedGoogle Scholar
  67. Thomas L (1997) Retrospective power analysis. Conservation Biology 11:276–280CrossRefGoogle Scholar
  68. Tidey JW, O’Neill SC, Higgins ST (2002) Contingent monetary reinforcement of smoking reductions, with and without transdermal nicotine, in outpatients with schizophrenia. Exp Clin Psychopharmacol 10:241–7CrossRefPubMedGoogle Scholar
  69. Toll BA, Katulak NA, McKee SA (2006) Investigating the factor structure of the Questionnaire on Smoking Urges-Brief (QSU-Brief). Addict Behav 31:1231–9. doi: 10.1016/j.addbeh.2005.09.008 PubMedCentralCrossRefPubMedGoogle Scholar
  70. Van Zundert RM, Ferguson SG, Shiffman S, Engels R (2012) Dynamic effects of craving and negative affect on adolescent smoking relapse. Health Psychol 31:226–34. doi: 10.1037/a0025204 CrossRefPubMedGoogle Scholar
  71. Versace F, Engelmann JM, Robinson JD, Jackson EF, Green CE, Lam CY, Minnix JA, Karam-Hage MA, Brown VL, Wetter DW, Cinciripini PM (2014) Prequit FMRI responses to pleasant cues and cigarette-related cues predict smoking cessation outcome. Nicotine Tob Res 16:697–708. doi: 10.1093/ntr/ntt214 PubMedCentralCrossRefPubMedGoogle Scholar
  72. Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ, Dewey SL, Wolf AP (1993) Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14:169–77. doi: 10.1002/syn.890140210 CrossRefPubMedGoogle Scholar
  73. Weaver MT, Sweitzer M, Coddington S, Sheppard J, Verdecchia N, Caggiula AR, Sved AF, Donny EC (2012) Precipitated withdrawal from nicotine reduces reinforcing effects of a visual stimulus for rats. Nicotine Tob Res 14:824–32. doi: 10.1093/ntr/ntr293 PubMedCentralCrossRefPubMedGoogle Scholar
  74. Wilson SJ, Delgado MR, McKee SA, Grigson PS, MacLean RR, Nichols TT, Henry SL (2014) Weak ventral striatal responses to monetary outcomes predict an unwillingness to resist cigarette smoking. Cog Affect Behav Neurosci 14:1196–207. doi: 10.3758/s13415-014-0285-8 CrossRefGoogle Scholar
  75. Wrase J, Grusser SM, Klein S, Diener C, Hermann D, Flor H, Mann K, Braus DF, Heinz A (2002) Development of alcohol-associated cues and cue-induced brain activation in alcoholics. Eur Psychiatry 17:287–91CrossRefPubMedGoogle Scholar
  76. Wrase J, Schlagenhauf F, Kienast T, Wustenberg T, Bermpohl F, Kahnt T, Beck A, Strohle A, Juckel G, Knutson B, Heinz A (2007) Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. Neuroimage 35:787–94. doi: 10.1016/j.neuroimage.2006.11.043 CrossRefPubMedGoogle Scholar
  77. Wray JM, Gass JC, Tiffany ST (2013) A systematic review of the relationships between craving and smoking cessation. Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco 15:1167–82. doi: 10.1093/ntr/nts268 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Maggie M. Sweitzer
    • 1
    Email author
  • Charles F. Geier
    • 2
  • Rachel Denlinger
    • 3
  • Erika E. Forbes
    • 3
    • 4
    • 5
    • 6
  • Bethany R. Raiff
    • 7
  • Jesse Dallery
    • 8
  • F. J. McClernon
    • 1
  • Eric C. Donny
    • 3
    • 4
    • 6
  1. 1.Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamUSA
  2. 2.Department of Human Development and Family StudiesPenn State UniversityUniversity ParkUSA
  3. 3.Department of PsychologyUniversity of PittsburghPittsburghUSA
  4. 4.Department of PsychiatryUniversity of Pittsburgh Medical CenterPittsburghUSA
  5. 5.Department of PediatricsUniversity of PittsburghPittsburghUSA
  6. 6.Center for Neural Basis of CognitionUniversity of Pittsburgh and Carnegie Mellon UniversityPittsburghUSA
  7. 7.Department of PsychologyRowan UniversityGlassboroUSA
  8. 8.Department of PsychologyUniversity of FloridaGainesvilleUSA

Personalised recommendations