Skip to main content

Advertisement

Log in

Altered relaxin family receptors RXFP1 and RXFP3 in the neocortex of depressed Alzheimer’s disease patients

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The G-protein-coupled relaxin family receptors RXFP1 and RXFP3 are widely expressed in the cortex and are involved in stress responses and memory and emotional processing. However, the identification of these receptors in human cortex and their status in Alzheimer’s disease (AD), which is characterized by both cognitive impairments and neuropsychiatric behaviours, have not been reported.

Objectives

In this study, we characterized RXFP receptors for immunoblotting and measured RXFP1 and RXFP3 immunoreactivities in the postmortem neocortex of AD patients longitudinally assessed for depressive symptoms.

Methods

RXFP1 and RXFP3 antibodies were characterized by immunoblotting with lysates from transfected HEK cells and preadsorption with RXFP3 peptides. Also, postmortem neocortical tissues from behaviourally assessed AD and age-matched controls were processed for immunoblotting with RXFP1 and RXFP3 antibodies.

Results

Compared to controls, putative RXFP1 immunoreactivity was reduced in parietal cortex of non-depressed AD patients but unchanged in depressed patients. Furthermore, putative RXFP3 immunoreactivity was increased only in depressed AD patients. RXFP1 levels in the parietal cortex also correlated with severity of depression symptoms. In contrast, RXFP1 and RXFP3 levels did not correlate with dementia severity or β-amyloid burden.

Conclusion

Alterations of RXFP1 and RXFP3 may be neurochemical markers of depression in AD, and relaxin family receptors warrant further preclinical investigations as possible therapeutic targets for neuropsychiatric symptoms in dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banerjee S, Hellier J, Dewey M, Romeo R, Ballard C, Baldwin R, Bentham P, Fox C, Holmes C, Katona C, Knapp M, Lawton C, Lindesay J, Livingston G, McCrae N, Moniz-Cook E, Murray J, Nurock S, Orrell M, O’Brien J, Poppe M, Thomas A, Walwyn R, Wilson K, Burns A (2011) Sertraline or mirtazapine for depression in dementia (HTA-SADD): a randomised, multicentre, double-blind, placebo-controlled trial. Lancet 378:403–411

    Article  CAS  PubMed  Google Scholar 

  • Bathgate RA, Lin F, Hanson NF, Otvos L Jr, Guidolin A, Giannakis C, Bastiras S, Layfield SL, Ferraro T, Ma S, Zhao C, Gundlach AL, Samuel CS, Tregear GW, Wade JD (2006) Relaxin-3: improved synthesis strategy and demonstration of its high-affinity interaction with the relaxin receptor LGR7 both in vitro and in vivo. Biochemistry 45:1043–1053

    Article  CAS  PubMed  Google Scholar 

  • Bathgate RA, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ (2013) Relaxin family peptides and their receptors. Physiol Rev 93:405–480

    Article  CAS  PubMed  Google Scholar 

  • Binder EB, Nemeroff CB (2010) The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol Psychiatry 15:574–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  • Callander GE, Bathgate RA (2010) Relaxin family peptide systems and the central nervous system. Cell Mol Life Sci 67:2327–41

    Article  CAS  PubMed  Google Scholar 

  • Ding SL, Van Hoesen G, Rockland KS (2000) Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas. J Comp Neurol 425:510–30

    Article  CAS  PubMed  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  • Francis PT, Ramirez MJ, Lai MK (2010) Neurochemical basis for symptomatic treatment of Alzheimer’s disease. Neuropharmacology 59:221–229

    Article  CAS  PubMed  Google Scholar 

  • Guadagna S, Esiri MM, Williams RJ, Francis PT (2012) Tau phosphorylation in human brain: relationship to behavioral disturbance in dementia. Neurobiol Aging 33:2798–806

    Article  CAS  PubMed  Google Scholar 

  • Halls ML, van der Westhuizen ET, Bathgate RA, Summers RJ (2007) Relaxin family peptide receptors—former orphans reunite with their parent ligands to activate multiple signalling pathways. Br J Pharmacol 150:677–691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hardy JA, Wester P, Winblad B, Gezelius C, Bring G, Eriksson A (1985) The patients dying after long terminal phase have acidotic brains; implications for biochemical measurements on autopsy tissue. J Neural Transm 61:253–264

    Article  CAS  PubMed  Google Scholar 

  • Hope T, Fairburn CG (1992) The present behavioural examination (PBE): the development of an interview to measure current behavioural abnormalities. Psychol Med 22:223–230

    Article  CAS  PubMed  Google Scholar 

  • Hope T, Keene J, Fairburn C, McShane R, Jacoby R (1997a) Behaviour changes in dementia. 2: are there behavioural syndromes? Int J Geriatr Psychiatry 12:1074–1078

    Article  CAS  PubMed  Google Scholar 

  • Hope T, Keene J, Gedling K, Cooper S, Fairburn C, Jacoby R (1997b) Behaviour changes in dementia. 1: point of entry data of a prospective study. Int J Geriatr Psychiatry 12:1062–1073

    Article  CAS  PubMed  Google Scholar 

  • Hope T, Keene J, Fairburn CG, Jacoby R, McShane R (1999) Natural history of behavioural changes and psychiatric symptoms in Alzheimer’s disease. A longitudinal study. Br J Psychiatry 174:39–44

    Article  CAS  PubMed  Google Scholar 

  • Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, Hsueh AJ (2002) Activation of orphan receptors by the hormone relaxin. Science 295:671–674

    Article  CAS  PubMed  Google Scholar 

  • Kirvell SL, Esiri M, Francis PT (2006) Down-regulation of vesicular glutamate transporters precedes cell loss and pathology in Alzheimer’s disease. J Neurochem 98:939–950

    Article  CAS  PubMed  Google Scholar 

  • Lai MK, Lai OF, Keene J, Esiri MM, Francis PT, Hope T, Chen CP (2001) Psychosis of Alzheimer’s disease is associated with elevated muscarinic M2 binding in the cortex. Neurology 57:805–811

    Article  CAS  PubMed  Google Scholar 

  • Lai MK, Tsang SW, Alder JT, Keene J, Hope T, Esiri MM, Francis PT, Chen CP (2005) Loss of serotonin 5-HT2A receptors in the postmortem temporal cortex correlates with rate of cognitive decline in Alzheimer’s disease. Psychopharmacology 179:673–677

    Article  CAS  PubMed  Google Scholar 

  • Lawlor B (2002) Managing behavioural and psychological symptoms in dementia. Br J Psychiatry 181:463–5

    Article  PubMed  Google Scholar 

  • Lee JH, Agacinski G, Williams JH, Wilcock GK, Esiri MM, Francis PT, Wong PT, Chen CP, Lai MK (2010) Intact cannabinoid CB1 receptors in the Alzheimer’s disease cortex. Neurochem Int 57:985–989

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Roozendaal B, Burazin TC, Tregear GW, McGaugh JL, Gundlach AL (2005) Relaxin receptor activation in the basolateral amygdala impairs memory consolidation. Eur J Neurosci 22:2117–22

    Article  PubMed  Google Scholar 

  • Ma S, Bonaventure P, Ferraro T, Shen PJ, Burazin TC, Bathgate RA, Liu C, Tregear GW, Sutton SW, Gundlach AL (2007) Relaxin-3 in GABA projection neurons of nucleus incertus suggests widespread influence on forebrain circuits via G-protein-coupled receptor-135 in the rat. Neuroscience 144:165–190

    Article  CAS  PubMed  Google Scholar 

  • McGowan BM, Stanley SA, Smith KL, White NE, Connolly MM, Thompson EL, Gardiner JV, Murphy KG, Ghatei MA, Bloom SR (2005) Central relaxin-3 administration causes hyperphagia in male Wistar rats. Endocrinology 146:3295–3300

    Article  CAS  PubMed  Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). part II standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    Article  CAS  PubMed  Google Scholar 

  • Osheroff PL, Phillips HS (1991) Autoradiographic localization of relaxin binding sites in rat brain. Proc Natl Acad Sci U S A 88:6413–6417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosenberg PB, Drye LT, Martin BK, Frangakis C, Mintzer JE, Weintraub D, Porsteinsson AP, Schneider LS, Rabins PV, Munro CA, Meinert CL, Lyketsos CG, Group D-R (2010) Sertraline for the treatment of depression in Alzheimer disease. Am J Geriatric Psychiatry: Off J Am Ass Geriatric Psychiatry 18:136–45

    Article  Google Scholar 

  • Roth M, Tym E, Mountjoy CQ, Huppert FA, Hendrie H, Verma S, Goddard R (1986) CAMDEX. A standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. Br J Psychiatry 149:698–709

    Article  CAS  PubMed  Google Scholar 

  • Ryan PJ, Buchler E, Shabanpoor F, Hossain MA, Wade JD, Lawrence AJ, Gundlach AL (2013) Central relaxin-3 receptor (RXFP3) activation decreases anxiety- and depressive-like behaviours in the rat. Behav Brain Res 244:142–151

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  • Smith CM, Lawrence AJ, Sutton SW, Gundlach AL (2009) Behavioral phenotyping of mixed background (129S5:B6) relaxin-3 knockout mice. Ann N Y Acad Sci 1160:236–241

    Article  CAS  PubMed  Google Scholar 

  • Smith CM, Shen PJ, Banerjee A, Bonaventure P, Ma S, Bathgate RA, Sutton SW, Gundlach AL (2010) Distribution of relaxin-3 and RXFP3 within arousal, stress, affective, and cognitive circuits of mouse brain. J Comp Neurol 518:4016–4045

    Article  CAS  PubMed  Google Scholar 

  • Steele C, Rovner B, Chase GA, Folstein M (1990) Psychiatric symptoms and nursing home placement of patients with Alzheimer’s disease. Am J Psychiatry 147:1049–1051

    Article  CAS  PubMed  Google Scholar 

  • Sunn N, Egli M, Burazin TC, Burns P, Colvill L, Davern P, Denton DA, Oldfield BJ, Weisinger RS, Rauch M, Schmid HA, McKinley MJ (2002) Circulating relaxin acts on subfornical organ neurons to stimulate water drinking in the rat. Proc Natl Acad Sci U S A 99:1701–1706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Surguladze SA, El-Hage W, Dalgleish T, Radua J, Gohier B, Phillips ML (2010) Depression is associated with increased sensitivity to signals of disgust: a functional magnetic resonance imaging study. J Psychiatr Res 44:894–902

    Article  PubMed Central  PubMed  Google Scholar 

  • Sutton SW, Shelton J, Smith C, Williams J, Yun S, Motley T, Kuei C, Bonaventure P, Gundlach A, Liu C, Lovenberg T (2009) Metabolic and neuroendocrine responses to RXFP3 modulation in the central nervous system. Ann N Y Acad Sci 1160:242–249

    Article  CAS  PubMed  Google Scholar 

  • Swanwick GR, Kirby M, Bruce I, Buggy F, Coen RF, Coakley D, Lawlor BA (1998) Hypothalamic-pituitary-adrenal axis dysfunction in Alzheimer’s disease: lack of association between longitudinal and cross-sectional findings. Am J Psychiatry 155:286–9

    Article  CAS  PubMed  Google Scholar 

  • Tan YY, Wade JD, Tregear GW, Summers RJ (1999) Quantitative autoradiographic studies of relaxin binding in rat atria, uterus and cerebral cortex: characterization and effects of oestrogen treatment. Br J Pharmacol 127:91–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka M (2010) Relaxin-3/insulin-like peptide 7, a neuropeptide involved in the stress response and food intake. FEBS J 277:4990–4997

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Iijima N, Miyamoto Y, Fukusumi S, Itoh Y, Ozawa H, Ibata Y (2005) Neurons expressing relaxin 3/INSL 7 in the nucleus incertus respond to stress. Eur J Neurosci 21:1659–1670

    Article  PubMed  Google Scholar 

  • Tekin S, Mega MS, Masterman DM, Chow T, Garakian J, Vinters HV, Cummings JL (2001) Orbitofrontal and anterior cingulate cortex neurofibrillary tangle burden is associated with agitation in Alzheimer disease. Ann Neurol 49:355–361

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Tsujimura A, Takao K, Nishi K, Ito Y, Yasuhara Y, Nakatomi Y, Yokoyama C, Fukui K, Miyakawa T, Tanaka M (2011) Relaxin-3-deficient mice showed slight alteration in anxiety-related behavior. Front Behav Neurosci 5:50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yaffe K, Fox P, Newcomer R, Sands L, Lindquist K, Dane K, Covinsky KE (2002) Patient and caregiver characteristics and nursing home placement in patients with dementia. JAMA 287:2090–2097

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Medical Research Council of Singapore (NMRC/CSA/032/2011; NMRC/IRG/1287/2011), Biomedical Research Council, Agency for Science, Technology and Research (BMRC10/21/19/645) and NUSMed (R184-000-223-133). The authors would like to thank Prof. Tony Hope and Dr Janet Keene for the data of clinical assessments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell K. P. Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Koh, S.Q., Guadagna, S. et al. Altered relaxin family receptors RXFP1 and RXFP3 in the neocortex of depressed Alzheimer’s disease patients. Psychopharmacology 233, 591–598 (2016). https://doi.org/10.1007/s00213-015-4131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4131-7

Keywords

Navigation