Advertisement

Psychopharmacology

, Volume 232, Issue 23, pp 4359–4369 | Cite as

α2-containing GABA(A) receptors: a requirement for midazolam-escalated aggression and social approach in mice

  • Emily L. NewmanEmail author
  • Kiersten S. Smith
  • Aki Takahashi
  • Adam Chu
  • Lara S. Hwa
  • Yang Chen
  • Joseph F. DeBold
  • Uwe Rudolph
  • Klaus A. Miczek
Original Investigation

Abstract

Rationale

Benzodiazepines (BZDs) are prescribed to reduce anxiety, agitation, and muscle spasms and for their sedative-hypnotic and anticonvulsant effects. Under specific conditions, BZDs escalate aggression in some individuals. Specific effects of BZDs have been linked to the α-subunit subtype composition of GABAA receptors.

Objectives

Point-mutated mice rendered selectively insensitive to BZDs at α1-, α2-, or α3-containing GABAA receptors were used to determine which α-subunit subtypes are necessary for BZDs to escalate aggression and social approach and to reduce fear-motivated behavior.

Methods

During resident-intruder confrontations, male wild-type (WT) and point-mutated α1(H101R), α2(H101R), and α3(H126R) mice were treated with midazolam (0–1.7 mg/kg, i.p.) and evaluated for aggression in an unfamiliar environment. Separate midazolam-treated WT and point-mutated mice were assessed for social approach toward a female or investigated in a 6-day fear-potentiated startle procedure.

Results

Moderate doses of midazolam (0.3–0.56 mg/kg, i.p.) escalated aggression in WT and α3(H126R) mutants and increased social approach in WT and α1(H101R) mice. The highest dose of midazolam (1.0 mg/kg) reduced fear-potentiated startle responding. All mice were sensitive to the sedative effect of midazolam (1.7 mg/kg) except α1(H101R) mutants.

Conclusions

Midazolam requires BZD-sensitive α1- and α2-containing GABAA receptors in order to escalate aggression and α2- and α3-containing receptors to reduce social anxiety-like behavior. GABAA receptors containing the α1-subunit are crucial for BZD-induced sedation, while α2-containing GABAA receptors may be a shared site of action for the pro-aggressive and anxiolytic effects of BZDs.

Keywords

Benzodiazepine Midazolam GABAA receptor subunit Gabra1 Gabra2 Gabra3 Aggression Social approach Social anxiety Fear-potentiated startle 

Notes

Acknowledgments

We would like to thank J. Thomas Sopko, Keisha Dodman, Darrel Gachette, Georgia Gunner, Nishani Hewage, Polly Huynh, Aida Vargas De Jesus, and Tiffany Wang for their excellent contributions.

The project described was supported by Award Numbers R01AA013983 to KAM from the National Institute on Alcohol Abuse and Alcoholism and R01MH080006 to UR from the National Institute of Mental Health. The content is the sole responsibility of the authors and does not necessarily represent the official views of the National Institute on Alcohol Abuse and Alcoholism, the National Institute of Mental Health, or the National Institutes of Health.

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Ben-Porath DD, Taylor SP (2002) The effects of diazepam (Valium) and aggressive disposition on human aggression—an experimental investigation. Addict Behav 27:167–177CrossRefPubMedGoogle Scholar
  2. Benson JA, Low K, Keist R, Mohler H, Rudolph U (1998) Pharmacology of recombinant gamma-aminobutyric acid A receptors rendered diazepam-insensitive by point-mutated alpha-subunits. Febs Lett 431:400–404CrossRefPubMedGoogle Scholar
  3. Berman ME, Jones GD, McCloskey MS (2005) The effects of diazepam on human self-aggressive behavior. Psychopharmacology 178:100–106CrossRefPubMedGoogle Scholar
  4. Bjork JM, Moeller FG, Kramer GL, Kram M, Suris A, Rush AJ, Petty F (2001) Plasma GABA levels correlate with aggressiveness in relatives of patients with unipolar depressive disorder. Psychiat Res 101:131–136CrossRefGoogle Scholar
  5. Brown JS, Kalish HI, Farber IE (1951) Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J Exp Psychol 41:317–328CrossRefPubMedGoogle Scholar
  6. Campo-Soria C, Chang YC, Weiss DS (2006) Mechanism of action of benzodiazepines on GABA(A) receptors. Brit J Pharmacol 148:984–990CrossRefGoogle Scholar
  7. Clement J, Simler S, Ciesielski L, Mandel P, Cabib S, Puglisi-Allegra S (1987) Age-dependent changes of brain GABA levels, turnover rates and shock-induced aggressive-behavior in inbred strains of mice. Pharmacol Biochem Behav 26:83–88CrossRefPubMedGoogle Scholar
  8. Covault J, Gelernter J, Hesselbrock V, Nellissery M, Kranzler HR (2004) Allelic and haplotypic association of GABRA2 with alcohol dependence. Am J Med Genet B 129B:104–109CrossRefGoogle Scholar
  9. Covault J, Gelernter J, Jensen K, Anton R, Kranzler HR (2008) Markers in the 5′-region of GABRG1 associate to alcohol dependence and are in linkage disequilibrium with markers in the adjacent GABRA2 gene. Neuropsychopharmacol 33:837–848CrossRefGoogle Scholar
  10. Crestani F, Martin JR, Mohler H, Rudolph U (2000) Mechanism of action of the hypnotic zolpidem in vivo. Brit J Pharmacol 131:1251–1254CrossRefGoogle Scholar
  11. Crestani F, Low K, Keist R, Mandelli MJ, Mohler H, Rudolph U (2001) Molecular targets for the myorelaxant action of diazepam. Mol Pharmacol 59:442–445PubMedGoogle Scholar
  12. Cruz DA, Lovallo EM, Stockton S, Rasband M, Lewis DA (2009) Postnatal development of synaptic structure proteins in pyramidal neuron axon initial segments in monkey prefrontal cortex. J Comp Neurol 514:353–367PubMedCentralCrossRefPubMedGoogle Scholar
  13. Dick DM, Bierut L, Hinrichs A, Fox L, Bucholz KK, Kramer J, Kuperman S, Hesselbrock V, Schuckit M, Almasy L, Tischfield J, Porjesz B, Begleiter H, Nurnberger J, Xuei XL, Edenberg HJ, Foroud T (2006a) The role of GABRA2 in risk for conduct disorder and alcohol and drug dependence across developmental stages. Behav Genet 36:577–590CrossRefPubMedGoogle Scholar
  14. Dick DM, Jones K, Saccone N, Hinrichs A, Wang JC, Goate A, Bierut L, Almasy L, Schuckit M, Hesselbrock V, Tischfield J, Foroud T, Edenberg H, Porjesz B, Begleiter H (2006b) Endophenotypes successfully lead to gene identification: results from the collaborative study on the genetics of alcoholism. Behav Genet 36:112–126CrossRefPubMedGoogle Scholar
  15. Dick DM, Latendresse SJ, Lansford JE, Budde JP, Goate A, Dodge KA, Pettit GS, Bates JE (2009) Role of GABRA2 in trajectories of externalizing behavior across development and evidence of moderation by parental monitoring. Arch Gen Psychiat 66:649–657PubMedCentralCrossRefPubMedGoogle Scholar
  16. Dimascio A (1973) Effects of benzodiazepines on aggression—reduced or increased. Psychopharmacologia 30:95–102CrossRefPubMedGoogle Scholar
  17. Dixon CI, Rosahl TW, Stephens DN (2008) Targeted deletion of the GABRA2 gene encoding alpha-2-subunits of GABA(A) receptors facilitates performance of a conditioned emotional response, and abolishes anxiolytic effects of benzodiazepines and barbiturates. Pharmacol Biochem Behav 90:1–8CrossRefPubMedGoogle Scholar
  18. Dixon CI, Morris HV, Breen G, Desrivieres S, Jugurnauth S, Steiner RC, Vallada H, Guindalini C, Laranjeira R, Messas G, Rosahl TW, Atack JR, Peden DR, Belelli D, Lambert JJ, King SL, Schumann G, Stephens DN (2010) Cocaine effects on mouse incentive-learning and human addiction are linked to alpha 2 subunit-containing GABA(A) receptors. Proc Natl Acad Sci U S A 107:2289–2294PubMedCentralCrossRefPubMedGoogle Scholar
  19. Drgon T, D’Addario C, Uhl GR (2006) Linkage disequilibrium, haplotype and association studies of a chromosome 4 GABA receptor gene cluster: candidate gene variants for addictions. Am J Med Genet B 141B:854–860CrossRefGoogle Scholar
  20. Edenberg HJ, Dick DM, Xuei XL, Tian HJ, Almasy L, Bauer LO, Crowe RR, Goate A, Hesselbrock V, Jones K, Kwon J, Li TK, Nurnberger JI, O’Connor SJ, Reich T, Rice J, Schuckit MA, Porjesz B, Foroud T, Begleiter H (2004) Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am J Hum Genet 74:705–714PubMedCentralCrossRefPubMedGoogle Scholar
  21. Ehrlich DE, Ryan SJ, Hazra R, Guo JD, Rainnie DG (2013) Postnatal maturation of GABAergic transmission in the rat basolateral amygdala. J Neurophysiol 110:926–941PubMedCentralCrossRefPubMedGoogle Scholar
  22. Engin E, Bakhurin KI, Smith KS, Hines RM, Reynolds LM, Tang WN, Sprengel R, Moss SJ, Rudolph U (2014) Neural basis of benzodiazepine reward: requirement for alpha 2 containing GABA(A) receptors in the nucleus accumbens. Neuropsychopharmacol 39:1805–1815CrossRefGoogle Scholar
  23. Enoch MA, Schwartz L, Albaugh B, Virkkunen M, Goldman D (2006) Dimensional anxiety mediates linkage of GABRA2 haplotypes with alcoholism. Am J Med Genet B 141B:599–607CrossRefGoogle Scholar
  24. Feja M, Koch M (2014) Ventral medial prefrontal cortex inactivation impairs impulse control but does not affect delay-discounting in rats. Behav Brain Res 264:230–239CrossRefPubMedGoogle Scholar
  25. Ferrari PF, Parmigiani S, Rodgers RJ, Palanza P (1997) Differential effects of chlordiazepoxide on aggressive behavior in male mice: the influence of social factors. Psychopharmacology 134:258–265CrossRefPubMedGoogle Scholar
  26. Fish EW, Faccidomo S, Miczek KA (1999) Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT1B receptor agonist CP-94,253. Psychopharmacology 146:391–399CrossRefPubMedGoogle Scholar
  27. Fox KA, Tuckosh JR, Wilcox AH (1970) Increased aggression among grouped male mice fed chlordiazepoxide. Eur J Pharmacol 11:119–121CrossRefPubMedGoogle Scholar
  28. Freund TF, Katona I (2007) Perisomatic inhibition. Neuron 56:33–42CrossRefPubMedGoogle Scholar
  29. Fritschy JM, Johnson DK, Mohler H, Rudolph U (1998a) Independent assembly and subcellular targeting of GABA(A)-receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo. Neurosci Lett 249:99–102CrossRefPubMedGoogle Scholar
  30. Fritschy JM, Weinmann O, Wenzel A, Benke D (1998b) Synapse-specific localization of NMDA and GABA(A) receptor subunits revealed by antigen-retrieval immunohistochemistry. J Comp Neurol 390:194–210CrossRefPubMedGoogle Scholar
  31. Gardos G, Dimascio A, Salzman C, Shader RI (1968) Differential actions of chlordiazepoxide and oxazepam on hostility. Arch Gen Psychiat 18:757–760CrossRefPubMedGoogle Scholar
  32. Gielen MC, Lumb MJ, Smart TG (2012) Benzodiazepines modulate GABA(A) receptors by regulating the preactivation step after GABA binding. J Neurosci 32:5707–5715CrossRefPubMedGoogle Scholar
  33. Gourley SL, DeBold JF, Yin WY, Cook J, Miczek KA (2005) Benzodiazepines and heightened aggressive behavior in rats: reduction by GABA(A)/alpha(1) receptor antagonists. Psychopharmacology 178:232–240CrossRefPubMedGoogle Scholar
  34. Halasz J, Liposits Z, Meelis W, Kruk MR, Haller J (2002) Hypothalamic attack area-mediated activation of the forebrain in aggression. Neuroreport 13:1267–1270CrossRefPubMedGoogle Scholar
  35. Haller J, Abraham I, Zelena D, Juhasz G, Makara GB, Kruk MR (1998) Aggressive experience affects the sensitivity of neurons towards pharmacological treatment in the hypothalamic attack area. Behav Pharmacol 9:469–475CrossRefPubMedGoogle Scholar
  36. Heise GA, Boff E (1961) Taming action of chlordiazepoxide. Fed Proc 20:393Google Scholar
  37. Heuschele W (1961) Chlordiazepoxide for calming zoo animals. J Am Vet Med Assoc 139:996–998PubMedGoogle Scholar
  38. Kemppainen S, Pitkanen A (2000) Distribution of parvalbumin, calretinin, and calbindin-D-28k immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid. J Comp Neurol 426:441–467CrossRefPubMedGoogle Scholar
  39. Koester C, Rudolph U, Haenggi T, Papilloud A, Fritschy JM, Crestani F (2013) Dissecting the role of diazepam-sensitive gamma-aminobutyric acid type A receptors in defensive behavioral reactivity to mild threat. Pharmacol Biochem Behav 103:541–549CrossRefPubMedGoogle Scholar
  40. Lappalainen J, Krupitsky E, Remizov M, Pchelina S, Taraskina A, Zvartau E, Somberg LK, Covault J, Kranzler HR, Krystal JH, Gelernter J (2005) Association between alcoholism and gamma-amino butyric acid alpha 2 receptor subtype in a Russian population. Alcohol Clin Exp Res 29:493–498CrossRefPubMedGoogle Scholar
  41. Lewis DA, Curley AA, Glausier JR, Volk DW (2012) Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35:57–67PubMedCentralCrossRefPubMedGoogle Scholar
  42. Li DW, Sulovari A, Cheng C, Zhao HY, Kranzler HR, Gelernter J (2014) Association of gamma-aminobutyric acid a receptor alpha 2 gene (GABRA2) with alcohol use disorder. Neuropsychopharmacology 39:907–918PubMedCentralCrossRefPubMedGoogle Scholar
  43. Loup F, Weinmann O, Yonekawa Y, Aguzzi A, Wieser HG, Fritschy JM (1998) A highly sensitive immunofluorescence procedure for analyzing the subcellular distribution of GABA(A) receptor subunits in the human brain. J Histochem Cytochem 46:1129–1139CrossRefPubMedGoogle Scholar
  44. Low K, Crestani F, Keist R, Benke D, Brunig I, Benson JA, Fritschy JM, Rulicke T, Bluethmann H, Mohler H, Rudolph U (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134CrossRefPubMedGoogle Scholar
  45. Macdonald RL, Olsen RW (1994) GABA(A) receptor channels. Annu Rev Neurosci 17:569–602CrossRefPubMedGoogle Scholar
  46. McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook G, Ferris P, Garrett L, Bristow L, Marshall G, Macaulay A, Brown N, Howell O, Moore KW, Carling RW, Street LJ, Castro JL, Ragan CI, Dawson GR, Whiting PJ (2000) Sedative but not anxiolytic properties of benzodiazepines ave mediated by the GABA(A) receptor alpha(1) subtype. Nat Neurosci 3:587–592CrossRefPubMedGoogle Scholar
  47. Miczek KA (1974) Intraspecies aggression in rats—effects of d-amphetamine and chlordiazepoxide. Psychopharmacologia 39:275–301CrossRefPubMedGoogle Scholar
  48. Miczek KA, O'Donnell JM (1980) Alcohol and chlordiazepoxide increase suppressed aggression in mice. Psychopharmacology 69:39–44Google Scholar
  49. Morris HV, Dawson GR, Reynolds DS, Atack JR, Stephens DN (2006) Both alpha 2 and alpha 3 GABA(A) receptor subtypes mediate the anxiolytic properties of benzodiazepine site ligands in the conditioned emotional response paradigm. Eur J Neurosci 23:2495–2504CrossRefPubMedGoogle Scholar
  50. Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, Young NB, Barbaro RP, Piven J, Magnuson TR, Crawley JN (2004) Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 3:303–314CrossRefPubMedGoogle Scholar
  51. Nusser Z, Sieghart W, Benke D, Fritschy JM, Somogyi P (1996) Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. Proc Natl Acad Sci U S A 93:11939–11944PubMedCentralCrossRefPubMedGoogle Scholar
  52. Ralvenius WT, Benke D, Acuna MA, Rudolph U, Zeilhofer HU (2015) Analgesia and unwanted benzodiazepine effects in point-mutated mice expressing only one benzodiazepine-sensitive GABAA receptor subtype. Nat Commun. doi: 10.1038/ncomms7803 PubMedGoogle Scholar
  53. Reynolds LM, Engin E, Tantillo G, Lau HM, Muschamp JW, Carlezon WA, Rudolph U (2012) Differential roles of GABA(A) receptor subtypes in benzodiazepine-induced enhancement of brain-stimulation reward. Neuropsychopharmacology 37:2531–2540PubMedCentralCrossRefPubMedGoogle Scholar
  54. Rudolph U, Knoflach F (2011) Beyond classical benzodiazepines: novel therapeutic potential of GABA(A) receptor subtypes. Nat Rev Drug Discov 10:685–697PubMedCentralCrossRefPubMedGoogle Scholar
  55. Rudolph U, Crestani F, Benke D, Brunig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Mohler H (1999) Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 401:796–800CrossRefPubMedGoogle Scholar
  56. Smith KS, Meloni EG, Myers KM, Van’t Veer A, Carlezon WA, Rudolph U (2011) Reduction of fear-potentiated startle by benzodiazepines in C57BL/6J mice. Psychopharmacology 213:697–706PubMedCentralCrossRefPubMedGoogle Scholar
  57. Smith KS, Engin E, Meloni EG, Rudolph U (2012) Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABA(A) receptor subtypes in mice. Neuropharmacology 63:250–258PubMedCentralCrossRefPubMedGoogle Scholar
  58. Soyka M, Preuss UW, Hesselbrock V, Zill P, Koller G, Bondy B (2008) GABA-A2 receptor subunit gene (GABRA2) polymorphisms and risk for alcohol dependence. J Psychiat Res 42:184–191CrossRefPubMedGoogle Scholar
  59. Toth M, Fuzesi T, Halasz J, Tulogdi A, Haller J (2010) Neural inputs of the hypothalamic “aggression area” in the rat. Behav Brain Res 215:7–20CrossRefPubMedGoogle Scholar
  60. Uhart M, Weerts EM, McCaul ME, Guo XQ, Yan XF, Kranzler HR, Li N, Wand GS (2013) GABRA2 markers moderate the subjective effects of alcohol. Addict Biol 18:357–369PubMedCentralCrossRefPubMedGoogle Scholar
  61. Wallace PS, Taylor SP (2009) Reduction of appeasement-related affect as a concomitant of diazepam-induced aggression: evidence for a link between aggression and the expression of self-conscious emotions. Aggress Behav 35:203–212CrossRefPubMedGoogle Scholar
  62. Weerts EM, Miczek KA (1996) Primate vocalizations during social separation and aggression: effects of alcohol and benzodiazepines. Psychopharmacology 127:255–264CrossRefPubMedGoogle Scholar
  63. Weisman AM, Berman ME, Taylor SP (1998) Effects of clorazepate, diazepam, and oxazepam on a laboratory measurement of aggression in men. Int Clin Psychopharmacol 13:183–188CrossRefPubMedGoogle Scholar
  64. Wieland HA, Luddens H, Seeburg PH (1992) A single histidine in GABA-A receptors is essential for benzodiazepine agonist binding. J Biol Chem 267:1426–1429PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Emily L. Newman
    • 1
    Email author
  • Kiersten S. Smith
    • 2
    • 3
  • Aki Takahashi
    • 4
  • Adam Chu
    • 1
  • Lara S. Hwa
    • 1
  • Yang Chen
    • 1
  • Joseph F. DeBold
    • 1
  • Uwe Rudolph
    • 2
    • 3
  • Klaus A. Miczek
    • 1
    • 5
  1. 1.Department of PsychologyTufts UniversityMedfordUSA
  2. 2.Laboratory of Genetic NeuropharmacologyMcLean HospitalBelmontUSA
  3. 3.Department of PsychiatryHarvard Medical SchoolBostonUSA
  4. 4.Laboratory of Behavioral NeuroendocrinologyUniversity of TsukubaTsukubaJapan
  5. 5.Department of NeuroscienceTufts UniversityBostonUSA

Personalised recommendations