, Volume 232, Issue 20, pp 3719–3729 | Cite as

Resilience to amphetamine in mouse models of netrin-1 haploinsufficiency: role of mesocortical dopamine

  • Matthew Pokinko
  • Luc Moquin
  • Angélica Torres-Berrío
  • Alain Gratton
  • Cecilia FloresEmail author
Original Investigation



Signaling through the netrin-1 receptor, deleted in colorectal cancer (DCC), in dopamine neurons controls the extent of their innervation to the medial prefrontal cortex (mPFC) during adolescence. In mice, dcc haploinsufficiency results in increased mPFC dopamine innervation and concentrations in adulthood. In turn, dcc haploinsufficiency leads to resilience to the effects of stimulant drugs of abuse on dopamine release in the nucleus accumbens and behavior.


First, we set out to determine whether increased mPFC dopamine innervation causes blunted behavioral responses to amphetamine in adult dcc haploinsufficient mice. Second, we investigated whether unc5c, another netrin-1 receptor expressed by dopamine neurons, is involved in these effects. Third, we assessed whether haploinsufficiency of netrin-1 itself leads to blunted behavioral responding to amphetamine, whether this phenotype emerges before or after adolescence and whether increased mPFC dopamine input is the underlying mechanism.


Adult, but not adolescent, dcc, unc5c and netrin-1 haploinsufficient mice exhibit blunted behavioral responses to amphetamine. Furthermore, adult dcc, unc5c, and netrin-1 haploinsufficient mice have exaggerated mPFC dopamine concentrations in comparison to their wild-type littermates. Importantly, resilience to amphetamine-induced behavioral activation in all the three mouse models is abolished by selective dopamine depletion in the medial prefrontal cortex.


dcc, unc5c, or netrin-1 haploinsufficiency leads to increased dopamine content in the mPFC and to resilience against amphetamine-induced behavioral activation. Our findings raise the hypothesis that DCC, UNC5C, and netrin-1 act in concert to organize the adolescent development of mesocortical dopamine innervation and, in turn, determine behavioral responses to drugs of abuse.


dcc unc5c Prefrontal cortex 6-OHDA 



This work was funded by Canadian Institute for Health Research (C.F. MOP-74709), the Natural Science and Engineering Research Council of Canada (C.F. Grant Number 2982226), and the Fonds de la Recherche en Santé du Québec (C.F.).

Conflict of interest

The authors declare that they have no competing interests.


  1. Abi-Dargham A, van de Giessen E, Slifstein M, Kegeles LS, Laruelle M (2009) Baseline and amphetamine-stimulated dopamine activity are related in drug-naive schizophrenic subjects. Biological Psychiatry 65:1091–3CrossRefPubMedGoogle Scholar
  2. Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB (1997) The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386:838–42CrossRefPubMedGoogle Scholar
  3. Anderzhanova EA, Bachli H, Buneeva OA, Narkevich VB, Medvedev AE, Thoeringer CK, Wotjak CT, Kudrin VS (2013) Strain differences in profiles of dopaminergic neurotransmission in the prefrontal cortex of the BALB/C vs. C57Bl/6 mice: consequences of stress and afobazole. European Journal of Pharmacology 708:95–104CrossRefPubMedGoogle Scholar
  4. Antonopoulos J, Dori I, Dinopoulos A, Chiotelli M, Parnavelas JG (2002) Postnatal development of the dopaminergic system of the striatum in the rat. Neuroscience 110:245–56CrossRefPubMedGoogle Scholar
  5. Auger ML, Schmidt ER, Manitt C, Dal-Bo G, Pasterkamp RJ, Flores C (2013) unc5c haploinsufficient phenotype: striking similarities with the dcc haploinsufficiency model. The European Journal of Neuroscience 38:2853–63PubMedGoogle Scholar
  6. Banks KE, Gratton A (1995) Possible involvement of medial prefrontal cortex in amphetamine-induced sensitization of mesolimbic dopamine function. European Journal of Pharmacology 282:157–67CrossRefPubMedGoogle Scholar
  7. Benes FM, Taylor JB, Cunningham MC (2000) Convergence and plasticity of monoaminergic systems in the medial prefrontal cortex during the postnatal period: implications for the development of psychopathology. Cerebral Cortex 10:1014–27CrossRefPubMedGoogle Scholar
  8. Beyer CE, Steketee JD (1999) Dopamine depletion in the medial prefrontal cortex induces sensitized-like behavioral and neurochemical responses to cocaine. Brain Research 833:133–41CrossRefPubMedGoogle Scholar
  9. Biskup CS, Sanchez CL, Arrant A, Van Swearingen AE, Kuhn C, Zepf FD (2012) Effects of acute tryptophan depletion on brain serotonin function and concentrations of dopamine and norepinephrine in C57BL/6 J and BALB/cJ mice. PLoS One 7, e35916PubMedCentralCrossRefPubMedGoogle Scholar
  10. Blum K, Gardner E, Oscar-Berman M, Gold M (2012) “Liking” and “wanting” linked to reward deficiency syndrome (RDS): hypothesizing differential responsivity in brain reward circuitry. Current Pharmaceutical Design 18:113–8PubMedCentralCrossRefPubMedGoogle Scholar
  11. Brummelte S, Teuchert-Noodt G (2006) Postnatal development of dopamine innervation in the amygdala and the entorhinal cortex of the gerbil (Meriones unguiculatus). Brain Research 1125:9–16CrossRefPubMedGoogle Scholar
  12. Carr DB, Sesack SR (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. The Journal of Neuroscience 20:3864–73PubMedGoogle Scholar
  13. Cowan RL, Sesack SR, Van Bockstaele EJ, Branchereau P, Chain J, Pickel VM (1994) Analysis of synaptic inputs and targets of physiologically characterized neurons in rat frontal cortex: combined in vivo intracellular recording and immunolabeling. Synapse 17:101–14CrossRefPubMedGoogle Scholar
  14. Daubaras M, Dal-Bo G, Flores C (2014) Target-dependent expression of the netrin-1 receptor, UNC5C, in projection neurons of the ventral tegmental area. Neuroscience 260:36–46CrossRefPubMedGoogle Scholar
  15. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences of the United States of America 85:5274–8PubMedCentralCrossRefPubMedGoogle Scholar
  16. Doherty MD, Gratton A (1996) Medial prefrontal cortical D1 receptor modulation of the meso-accumbens dopamine response to stress: an electrochemical study in freely-behaving rats. Brain Research 715:86–97CrossRefPubMedGoogle Scholar
  17. Evans AH, Pavese N, Lawrence AD, Tai YF, Appel S, Doder M, Brooks DJ, Lees AJ, Piccini P (2006) Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Annals of Neurology 59:852–8CrossRefPubMedGoogle Scholar
  18. Fazeli A, Dickinson SL, Hermiston ML, Tighe RV, Steen RG, Small CG, Stoeckli ET, Keino-Masu K, Masu M, Rayburn H, Simons J, Bronson RT, Gordon JI, Tessier-Lavigne M, Weinberg RA (1997) Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 386:796–804CrossRefPubMedGoogle Scholar
  19. Flores C (2011) Role of netrin-1 in the organization and function of the mesocorticolimbic dopamine system. Journal of Psychiatry & Neuroscience 36:296–310CrossRefGoogle Scholar
  20. Flores C, Manitt C, Rodaros D, Thompson KM, Rajabi H, Luk KC, Tritsch NX, Sadikot AF, Stewart J, Kennedy TE (2005) Netrin receptor deficient mice exhibit functional reorganization of dopaminergic systems and do not sensitize to amphetamine. Molecular Psychiatry 10:606–12CrossRefPubMedGoogle Scholar
  21. Garris PA, Wightman RM (1994) Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study. The Journal of Neuroscience 14:442–50PubMedGoogle Scholar
  22. Garris PA, Collins LB, Jones SR, Wightman RM (1993) Evoked extracellular dopamine in vivo in the medial prefrontal cortex. Journal of Neurochemistry 61:637–47CrossRefPubMedGoogle Scholar
  23. Goldstein RZ, Volkow ND (2011) Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature Reviews Neuroscience 12:652–69PubMedCentralCrossRefPubMedGoogle Scholar
  24. Grant A, Hoops D, Labelle-Dumais C, Prevost M, Rajabi H, Kolb B, Stewart J, Arvanitogiannis A, Flores C (2007) Netrin-1 receptor-deficient mice show enhanced mesocortical dopamine transmission and blunted behavioural responses to amphetamine. The European Journal of Neuroscience 26:3215–28CrossRefPubMedGoogle Scholar
  25. Grant A, Speed Z, Labelle-Dumais C, Flores C (2009) Post-pubertal emergence of a dopamine phenotype in netrin-1 receptor-deficient mice. The European Journal of Neuroscience 30:1318–28CrossRefPubMedGoogle Scholar
  26. Grant A, Fathalli F, Rouleau G, Joober R, Flores C (2012) Association between schizophrenia and genetic variation in DCC: a case-control study. Schizophrenia Research 137:26–31CrossRefPubMedGoogle Scholar
  27. Grant A, Manitt C, Flores C (2014) Haloperidol treatment downregulates DCC expression in the ventral tegmental area. Neuroscience Letters 575:58–62CrossRefPubMedGoogle Scholar
  28. Harter PN, Bunz B, Dietz K, Hoffmann K, Meyermann R, Mittelbronn M (2010) Spatio-temporal deleted in colorectal cancer (DCC) and netrin-1 expression in human foetal brain development. Neuropathology and Applied Neurobiology 36:623–35CrossRefPubMedGoogle Scholar
  29. Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E (1999) A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97:927–41CrossRefPubMedGoogle Scholar
  30. Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophrenia Bulletin 35:549–62PubMedCentralCrossRefPubMedGoogle Scholar
  31. Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HB (1988) Development of the dopaminergic innervation in the prefrontal cortex of the rat. The Journal of Comparative Neurology 269:58–72CrossRefPubMedGoogle Scholar
  32. Kegeles LS, Abi-Dargham A, Frankle WG, Gil R, Cooper TB, Slifstein M, Hwang DR, Huang Y, Haber SN, Laruelle M (2010) Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Archives of General Psychiatry 67:231–9CrossRefPubMedGoogle Scholar
  33. Keleman K, Dickson BJ (2001) Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32:605–17CrossRefPubMedGoogle Scholar
  34. Kim JH, Lavan D, Chen N, Flores C, Cooper H, Lawrence AJ (2013) Netrin-1 receptor-deficient mice show age-specific impairment in drug-induced locomotor hyperactivity but still self-administer methamphetamine. Psychopharmacology 230:607–16CrossRefPubMedGoogle Scholar
  35. King D, Zigmond MJ, Finlay JM (1997) Effects of dopamine depletion in the medial prefrontal cortex on the stress-induced increase in extracellular dopamine in the nucleus accumbens core and shell. Neuroscience 77:141–53CrossRefPubMedGoogle Scholar
  36. Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:760–73CrossRefPubMedGoogle Scholar
  37. Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, Deisseroth K, Malenka RC (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491:212–7PubMedCentralCrossRefPubMedGoogle Scholar
  38. Leyton M, Boileau I, Benkelfat C, Diksic M, Baker G, Dagher A (2002) Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 27:1027–35CrossRefPubMedGoogle Scholar
  39. Manitt C, Labelle-Dumais C, Eng C, Grant A, Mimee A, Stroh T, Flores C (2010) Peri-pubertal emergence of UNC-5 homologue expression by dopamine neurons in rodents. PLoS One 5, e11463PubMedCentralCrossRefPubMedGoogle Scholar
  40. Manitt C, Mimee A, Eng C, Pokinko M, Stroh T, Cooper HM, Kolb B, Flores C (2011) The netrin receptor DCC is required in the pubertal organization of mesocortical dopamine circuitry. The Journal of Neuroscience 31:8381–94CrossRefPubMedGoogle Scholar
  41. Manitt C, Eng C, Pokinko M, Ryan RT, Torres-Berrio A, Lopez JP, Yogendran SV, Daubaras MJ, Grant A, Schmidt ER, Tronche F, Krimpenfort P, Cooper HM, Pasterkamp RJ, Kolb B, Turecki G, Wong TP, Nestler EJ, Giros B, Flores C (2013) dcc orchestrates the development of the prefrontal cortex during adolescence and is altered in psychiatric patients. Translational. Psychiatry 3, e338Google Scholar
  42. Meneret A, Depienne C, Riant F, Trouillard O, Bouteiller D, Cincotta M, Bitoun P, Wickert J, Lagroua I, Westenberger A, Borgheresi A, Doummar D, Romano M, Rossi S, Defebvre L, De Meirleir L, Espay AJ, Fiori S, Klebe S, Quelin C, Rudnik-Schoneborn S, Plessis G, Dale RC, Sklower Brooks S, Dziezyc K, Pollak P, Golmard JL, Vidailhet M, Brice A, Roze E (2014) Congenital mirror movements: mutational analysis of RAD51 and DCC in 26 cases. Neurology 82:1999–2002PubMedCentralCrossRefPubMedGoogle Scholar
  43. Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M, Weinberger DR, Berman KF (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nature Neuroscience 5:267–71CrossRefPubMedGoogle Scholar
  44. Naneix F, Marchand AR, Di Scala G, Pape JR, Coutureau E (2012) Parallel maturation of goal-directed behavior and dopaminergic systems during adolescence. The Journal of Neuroscience 32:16223–32CrossRefPubMedGoogle Scholar
  45. O’Donnell P (2011) Adolescent onset of cortical disinhibition in schizophrenia: insights from animal models. Schizophrenia Bulletin 37:484–92PubMedCentralCrossRefPubMedGoogle Scholar
  46. Osborne PB, Halliday GM, Cooper HM, Keast JR (2005) Localization of immunoreactivity for deleted in colorectal cancer (DCC), the receptor for the guidance factor netrin-1, in ventral tier dopamine projection pathways in adult rodents. Neuroscience 131:671–81CrossRefPubMedGoogle Scholar
  47. Phillipson OT (1979) Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: a horseradish peroxidase study in the rat. The Journal of Comparative Neurology 187:117–43CrossRefPubMedGoogle Scholar
  48. Reynolds LM, Gifuni AJ, McCrea ET, Shizgal P, Flores C (2015a) dcc haploinsufficiency results in blunted sensitivity to cocaine enhancement of reward seeking. Behavioural Brain Research. doi: 10.1016/j.bbr.2015.05.020 Google Scholar
  49. Reynolds LM, Makowski CS, Yogendran SV, Kiessling S, Cermakian N, Flores C (2015b) Amphetamine in adolescence disrupts the development of medial prefrontal cortex dopamine connectivity in a DCC-dependent manner. Neuropsychopharmacology 40:1101–12CrossRefPubMedGoogle Scholar
  50. Robinson TE, Whishaw IQ (1988) Normalization of extracellular dopamine in striatum following recovery from a partial unilateral 6-OHDA lesion of the substantia nigra: a microdialysis study in freely moving rats. Brain Research 450:209–24CrossRefPubMedGoogle Scholar
  51. Rosenberg DR, Lewis DA (1995) Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: a tyrosine hydroxylase immunohistochemical analysis. The Journal of Comparative Neurology 358:383–400CrossRefPubMedGoogle Scholar
  52. Scornaiencki R, Cantrup R, Rushlow WJ, Rajakumar N (2009) Prefrontal cortical D1 dopamine receptors modulate subcortical D2 dopamine receptor-mediated stress responsiveness. The International Journal of Neuropsychopharmacology 12:1195–208CrossRefPubMedGoogle Scholar
  53. Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. The Journal of Comparative Neurology 323:387–410CrossRefPubMedGoogle Scholar
  54. Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, Tessier-Lavigne M (1996) Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87:1001–14CrossRefPubMedGoogle Scholar
  55. Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. The Journal of Comparative Neurology 290:213–42CrossRefPubMedGoogle Scholar
  56. Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI (1998a) Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. The Journal of Neuroscience 18:2697–708PubMedGoogle Scholar
  57. Sesack SR, Hawrylak VA, Melchitzky DS, Lewis DA (1998b) Dopamine innervation of a subclass of local circuit neurons in monkey prefrontal cortex: ultrastructural analysis of tyrosine hydroxylase and parvalbumin immunoreactive structures. Cerebral Cortex 8:614–22CrossRefPubMedGoogle Scholar
  58. Slifstein M, van de Giessen E, Van Snellenberg J, Thompson JL, Narendran R, Gil R, Hackett E, Girgis R, Ojeil N, Moore H, D’Souza D, Malison RT, Huang Y, Lim K, Nabulsi N, Carson RE, Lieberman JA, Abi-Dargham A (2015) Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiatry 72:316–24CrossRefPubMedGoogle Scholar
  59. Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neuroscience and Biobehavioral Reviews 24:417–63CrossRefPubMedGoogle Scholar
  60. Srour M, Riviere JB, Pham JM, Dube MP, Girard S, Morin S, Dion PA, Asselin G, Rochefort D, Hince P, Diab S, Sharafaddinzadeh N, Chouinard S, Theoret H, Charron F, Rouleau GA (2010) Mutations in DCC cause congenital mirror movements. Science 328:592CrossRefPubMedGoogle Scholar
  61. Torres-Berrio, A., Lopez, J.P., Bagot, R., Dal-Bo, F., Nouel, D., Zhu, L., Yogendran, S., Eng, C., Manitt, C., Storch, F., Turecki, G., Nestler, E., Flores, C. (2015). DCC confers susceptibility to depression-like behaviors in humans and mice and is regulated by miR-218. Program No. PO 114. IBRO, 2015, Rio de Janeiro, Brazil.Google Scholar
  62. Tseng KY, O’Donnell P (2007) D2 dopamine receptors recruit a GABA component for their attenuation of excitatory synaptic transmission in the adult rat prefrontal cortex. Synapse 61:843–50PubMedCentralCrossRefPubMedGoogle Scholar
  63. Van Eden CG, Hoorneman EM, Buijs RM, Matthijssen MA, Geffard M, Uylings HB (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neuroscience 22:849–62CrossRefPubMedGoogle Scholar
  64. Ventura R, Alcaro A, Cabib S, Conversi D, Mandolesi L, Puglisi-Allegra S (2004) Dopamine in the medial prefrontal cortex controls genotype-dependent effects of amphetamine on mesoaccumbens dopamine release and locomotion. Neuropsychopharmacology 29:72–80CrossRefPubMedGoogle Scholar
  65. Vezina P (2004) Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neuroscience and Biobehavioral Reviews 27:827–39CrossRefPubMedGoogle Scholar
  66. Vezina P, Blanc G, Glowinski J, Tassin JP (1991) Opposed behavioural outputs of increased dopamine transmission in prefrontocortical and subcortical areas: a role for the cortical D-1 dopamine receptor. The European Journal of Neuroscience 3:1001–1007CrossRefPubMedGoogle Scholar
  67. Volkow ND, Fowler JS (2000) Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cerebral Cortex 10:318–25CrossRefPubMedGoogle Scholar
  68. Volkow ND, Fowler JS, Wang GJ, Goldstein RZ (2002) Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiology of Learning and Memory 78:610–24CrossRefPubMedGoogle Scholar
  69. Voorn P, Kalsbeek A, Jorritsma-Byham B, Groenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–87CrossRefPubMedGoogle Scholar
  70. Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74:858–73CrossRefPubMedGoogle Scholar
  71. Yetnikoff L, Eng C, Benning S, Flores C (2010) Netrin-1 receptor in the ventral tegmental area is required for sensitization to amphetamine. The European Journal of Neuroscience 31:1292–302CrossRefPubMedGoogle Scholar
  72. Yetnikoff L, Almey A, Arvanitogiannis A, Flores C (2011) Abolition of the behavioral phenotype of adult netrin-1 receptor deficient mice by exposure to amphetamine during the juvenile period. Psychopharmacology 217:505–14CrossRefPubMedGoogle Scholar
  73. Yetnikoff L, Pokinko M, Arvanitogiannis A, Flores C (2014) Adolescence: a time of transition for the phenotype of dcc heterozygous mice. Psychopharmacology 231:1705–14CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Matthew Pokinko
    • 1
    • 3
  • Luc Moquin
    • 3
  • Angélica Torres-Berrío
    • 1
    • 3
  • Alain Gratton
    • 2
    • 3
  • Cecilia Flores
    • 2
    • 3
    Email author
  1. 1.Integrated Program in NeuroscienceMcGill UniversityMontréalCanada
  2. 2.Department of PsychiatryMcGill UniversityMontréalCanada
  3. 3.Douglas Mental Health University InstituteMontréalCanada

Personalised recommendations