, Volume 232, Issue 11, pp 1879–1885 | Cite as

Cortical activity differs during nicotine deprivation versus satiation in heavy smokers

  • David E. EvansEmail author
  • Steven K. Sutton
  • Jason A. Oliver
  • David J. Drobes
Original Investigation



Research suggests that nicotine deprivation among smokers is associated with lesser resting cortical activity (i.e., greater power density in theta and alpha-1 EEG bands and lesser power in beta bands). These changes in cortical activity may be indicative of withdrawal-related cognitive deficits, yet the markers of differences in cortical activity are not well-established.


The objective of the study was to clarify the EEG frequency bands affected by nicotine deprivation and assess prospective moderators.


One hundred twenty-four heavy smokers visited the laboratory on two occasions following overnight smoking/nicotine deprivation. Prior to collecting 3 min of resting EEG data, participants smoked two very low nicotine cigarettes (<0.05 mg nicotine yield) at one session and two moderate nicotine cigarettes (0.60 mg nicotine yield) at the other.


Theta and alpha-1 band (4–7 and 8–10 Hz) was greater in the very low nicotine (deprivation) relative to higher nicotine (satiation) condition. There were no condition differences in the beta-1 and beta-2 bands (14–20 and 21–30 Hz).


Greater slow wave resting EEG may serve as a reliable marker of decreased cortical activity during smoking deprivation and, in turn, of withdrawal-related deficits in cognitive functioning. This research may inform the development of adjunct strategies for smoking cessation.


Abstinence Attention Cognitive control Cortical activation EEG Hemispheric asymmetry Smoking Tobacco Withdrawal 



This study was funded by NIH grants R21 DA027001 (DE) and R21 DA024226 (DD). Additional support was provided by grant 13PRE14660076 from the American Heart Association (JO) and the Biostatistics Core Facility at the H. Lee Moffitt Cancer Center & Research Institute, an NCI designated Comprehensive Cancer Center (P30-CA076292). The authors would like to thank Renee Ornduff, Natasha Garcia, and Lauren Meltzer for their work on the project.

Conflict of interest

None of the authors have potential conflicts of interest (financial or other) regarding the information reported herein. David Drobes has served as an expert witness in litigation against tobacco companies.


  1. Beaver JD, Long CJ, Cole DM, Durcan MJ, Bannon LC, Mishra RG, Matthews PM (2011) The effects of nicotine replacement on cognitive brain activity during smoking withdrawal studied with simultaneous fMRI/EEG. Neuropsychopharmacology 36:1792–1800. doi: 10.1038/npp.2011.53 CrossRefPubMedCentralPubMedGoogle Scholar
  2. Broadbent DE, Cooper PF, FitzGerald P, Parkes KR (1982) The Cognitive Failures Questionnaire (CFQ) and its correlates. Br J Clin Psychol 21:1–16. doi: 10.1111/j.2044-8260.1982.tb01421.x CrossRefPubMedGoogle Scholar
  3. Brody AL, Mandelkern MA, Costello MR, Abrams AL, Scheibal D, Farahi J, London ED, Olmstead RE, Rose JE, Mukhin AG (2009) Brain nicotinic acetylcholine receptor occupancy: effect of smoking a denicotinized cigarette. Int J Neuropsychopharmacol 12:305–316CrossRefPubMedCentralPubMedGoogle Scholar
  4. Clarke AR, Barry RJ, Bond D, McCarthy R, Selikowitz M (2002) Effects of stimulant medications on the EEG of children with attention-deficit/hyperactivity disorder. Psychopharmacology 164:277–284. doi: 10.1007/s00213-002-1205-0 CrossRefPubMedGoogle Scholar
  5. Ernst M, Matochik JA, Heishman SJ, Van Horn JD, Jons PH, Henningfield JE, London ED (2001) Effect of nicotine on brain activation during performance of a working memory task. Proc Natl Acad Sci 98:4728–4733. doi: 10.1073/pnas.061369098 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Evans DE, Drobes DJ (2009) Nicotine self-medication of cognitive-attentional processing. Addict Biol 14:32–42. doi: 10.1111/j.1369-1600.2008.00130.x CrossRefPubMedGoogle Scholar
  7. Evans DE, Maxfield ND, Van Rensburg KJ, Oliver JA, Jentink KG, Drobes DJ (2013a) Nicotine deprivation influences P300 markers of cognitive control. Neuropsychopharmacology 38:2525–31. doi: 10.1038/npp.2013.159 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Evans DE, Rothbart MK (2007) Developing a model for adult temperament. J Res Pers 41:868–888. doi: 10.1016/j.jrp.2006.11.002 CrossRefGoogle Scholar
  9. Evans DE, Sutton SK, Janse Van Rensburg K, Jentink KG, Drobes DJ (2013b) Cognitive control trait moderation of nicotine induced cortical activation among nonsmokers. Paper presented at the Annual Meeting of the Society for Research on Nicotine and Tobacco, Boston, MassachusettsGoogle Scholar
  10. First MB, Spitzer RL, Gibbon M, Williams JBW (2002) Structured clinical interview for SM-IV-TR Axis I disorders, research version, non-patient edition (SCID-I/NP). Biometrics Research, New York State Psychiatric Institute, New YorkGoogle Scholar
  11. Fisher DJ, Daniels R, Jaworska N, Knobelsdorf A, Knott VJ (2012) Effects of acute nicotine administration on resting EEG in nonsmokers. Exp Clin Psychopharmacol 20:71. doi: 10.1037/a0025221 CrossRefPubMedGoogle Scholar
  12. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom K-O (1991) The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict 86:1119–1127. doi: 10.1111/j.1360-0443.1991.tb01879.x CrossRefPubMedGoogle Scholar
  13. Hendricks P, Ditre J, Drobes D, Brandon T (2006) The early time course of smoking withdrawal effects. Psychopharmacology (Berl) 187:385–396. doi: 10.1007/s00213-006-0429-9 CrossRefGoogle Scholar
  14. Hermens DF, Soei EX, Clarke SD, Kohn MR, Gordon E, Williams LM (2005) Resting EEG theta activity predicts cognitive performance in attention-deficit hyperactivity disorder. Pediatr Neurol 32:248–256. doi: 10.1016/j.pediatrneurol.2004.11.009 CrossRefPubMedGoogle Scholar
  15. Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition–timing hypothesis. Br Res Rev 53:63–88. doi: 10.1016/j.brainresrev.2006.06.003 CrossRefGoogle Scholar
  16. Krishnan-Sarin S, Reynolds B, Duhig AM, Smith A, Liss T, McFetridge A, Potenza MN (2007) Behavioral impulsivity predicts treatment outcome in a smoking cessation program for adolescent smokers. Drug Alcohol Depend 88:79–82. doi: 10.1016/j.drugalcdep.2006.09.006 CrossRefPubMedCentralPubMedGoogle Scholar
  17. Knott VJ, Fisher DJ (2007) Naltrexone alteration of the nicotine-induced EEG and mood activation response in tobacco-deprived cigarette smokers. Exp Clin Psychopharmacol 15:368. doi: 10.1037/1064-1297.15.4.368 CrossRefPubMedGoogle Scholar
  18. Knott VJ, Raegele M, Fisher D, Robertson N, Millar A, McIntosh J, Ilivitsky V (2005) Clonidine pre-treatment fails to block acute smoking-induced EEG arousal/mood in cigarette smokers. Pharmacol Biochem Behav 80:161–171. doi: 10.1016/j.pbb.2004.10.025 CrossRefPubMedGoogle Scholar
  19. Kozink RV, Kollins SH, McClernon FJ (2010) Smoking withdrawal modulates right inferior frontal cortex but not presupplementary motor area activation during inhibitory control. Neuropsychopharmacology 35:2600–2606. doi: 10.1038/npp.2010.154 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Lansbergen MM, Arns M, van Dongen-Boomsma M, Spronk D, Buitelaar JK (2011) The increase in theta/beta ratio on resting-state EEG in boys with attention-deficit/hyperactivity disorder is mediated by slow alpha peak frequency. Prog Neuro-Psychopharmacol Biol Psychiatry 35:47–52. doi: 10.1016/j.pnpbp.2010.08.004 CrossRefGoogle Scholar
  21. Lerman C, Gu H, Loughead J, Ruparel K, Yang Y, Stein EA (2014) Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function. JAMA Psychiatr 71:523–30. doi: 10.1001/jamapsychiatry.2013.4091 CrossRefGoogle Scholar
  22. Loo SK, Teale PD, Reite ML (1999) EEG correlates of methylphenidate response among children with ADHD: a preliminary report. Biol Psychiatr 45:1657–1660. doi: 10.1016/S0006-3223(98)00250-9 CrossRefGoogle Scholar
  23. Newhouse PA, Potter A, Singh A (2004) Effects of nicotinic stimulation on cognitive performance. Curr Opin Pharmacol 4:36–46. doi: 10.1016/j.coph.2003.11.001
  24. Newton TF, Cook I, Holschneider D, Rosenblatt M, Lindholm J, Jarvik M (1998) Quantitative EEG effects of nicotine replacement by cigarette smoking1. Neuropsychobiology 37:112–116. doi: 10.1159/000026488
  25. Potter AS, Newhouse PA (2008) Acute nicotine improves cognitive deficits in young adults with attention-deficit/hyperactivity disorder. Pharm Biochem Behav 88:407–17. doi: 10.1016/j.pbb.2007.09.014 CrossRefGoogle Scholar
  26. Powell JH, Pickering A, Dawkins L, West R, Powell JF (2004) Cognitive and psychological correlates of smoking abstinence, and predictors of successful cessation. Addict Behav 29:1407–1426. doi: 10.1016/j.addbeh.2004.06.006 CrossRefPubMedGoogle Scholar
  27. Putman P, van Peer J, Maimari I, van der Werff S (2010) EEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traits. Biol Psychol 83:73–78. doi: 10.1016/j.biopsycho.2009.10.008 CrossRefPubMedGoogle Scholar
  28. Roche RAP, Garavan H, Foxe JJ, O'Mara SM (2005) Individual differences discriminate event-related potentials but not performance during response inhibition. Exp Br Res 160:60–70. doi: 10.1007/s00221-004-1985-z CrossRefGoogle Scholar
  29. Schlienz NJ, Hawk LW Jr, Rosch KS (2013) The effects of acute abstinence from smoking and performance-based rewards on performance monitoring. Psychopharmacology 229:701–711. doi: 10.1007/s00213-013-3131-8 CrossRefPubMedCentralPubMedGoogle Scholar
  30. Smilek D, Carriere JS, Cheyne JA (2010) Failures of sustained attention in life, lab, and brain: ecological validity of the SART. Neuropsychologia 48:2564–2570. doi: 10.1016/j.neuropsychologia.2010.05.002 CrossRefPubMedGoogle Scholar
  31. Sutton SK, Davidson RJ (1997) Prefrontal brain asymmetry: a biological substrate of the behavioral approach and inhibition systems. Psychol Sci 8:204–210. doi: 10.1111/j.1467-9289.1997.tb00413.x CrossRefGoogle Scholar
  32. Tabachnick BG, Fidell LS (2007) Using multivariate statistics, 5th edn. Allyn and Bacon, BostonGoogle Scholar
  33. Waters AJ, Jarvis MJ, Sutton SR (1998) Nicotine withdrawal and accident rates. Nature 394:137–137. doi: 10.1038/28076 CrossRefPubMedGoogle Scholar
  34. Xu J, Mendrek A, Cohen MS, Monterosso J, Rodriguez P, Simon SL, Brody A, Jarvik M, Domier CP, Olmstead R, Ernst M, London E (2005) Brain activity in cigarette smokers performing a working memory task: effect of smoking abstinence. Biol Psychiatr 58:143–150. doi: 10.1016/j.biopsych.2005.03.028 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • David E. Evans
    • 1
    • 2
    • 3
    Email author
  • Steven K. Sutton
    • 1
    • 2
  • Jason A. Oliver
    • 1
    • 2
  • David J. Drobes
    • 1
    • 2
  1. 1.Moffitt Cancer CenterTampaUSA
  2. 2.University of South FloridaTampaUSA
  3. 3.Department of Health Outcomes and BehaviorH. Lee Moffitt Cancer Center & Research InstituteTampaUSA

Personalised recommendations