, Volume 232, Issue 10, pp 1843–1857 | Cite as

Ghrelin increases memory consolidation through hippocampal mechanisms dependent on glutamate release and NR2B-subunits of the NMDA receptor

  • Marisa S. Ghersi
  • L. A. Gabach
  • F. Buteler
  • A. A. Vilcaes
  • H. B. Schiöth
  • M. F. Perez
  • S. R. de Barioglio
Original Investigation



Ghrelin (Ghr) is a peptide that participates in the modulation of several biological processes. Ghr administration into the hippocampus improves learning and memory in different memory tests. However, the possible mechanisms underlying this effect on memory have not yet been clarified.


The purpose of the present work is to add new insights about the mechanisms by which Ghr modulates long-term memory consolidation in the hippocampus. We examined Ghr effects upon processes related to increased synaptic efficacy as presynaptic glutamate release and changes in the expression of the NR2B-subunits containing n-methyl-d-aspartate receptors (NMDAR), which are critical for LTP induction. We also attempted to determine the temporal window in which Ghr administration induces memory facilitation and if the described effects depend on GHS-R1a stimulation.


The present research demonstrated that Ghr increased glutamate release from hippocampal synaptosomes; intra-hippocampal Ghr administration increased NR2B-subunits expression in CA1 and DG subareas and also reversed the deleterious effects of the NR2B-subunit-specific antagonist, Ro 25-6981, upon memory consolidation and LTP generation in the hippocampus. These effects are likely to be the consequence of GHS-R1a activation.


According to the results above mentioned and previous findings, we can hypothesize some of the mechanisms by which Ghr modulates memory consolidation. At presynaptic level, Ghr stimulates glutamate release, probably by enhancing [Ca2+]i. At postsynaptic level, the glutamate released activates NMDAR while Ghr also mediates effects directly activating its specific receptors and increases NR2B-subunit expression.


Ghrelin Memory consolidation Glutamate release LTP NR2B subunit 



This work was supported by grants from Consejo Nacional de Investigación Científica y Técnica (CONICET), Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba, Argentina (SECyT-UNC), Fondo para la Investigación Científica y Tecnológica, Agencia Nacional de Promoción Científica y Tecnológica (FONCyT), and the Swedish Research Council (VR, Medicine). The authors thank Estela Salde and Lorena Mercado (CONICET and UNC technicians) for their technical assistance.


  1. Barria A, Malinow R (2005) NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48(2):289–301CrossRefPubMedGoogle Scholar
  2. Bartus K, Pigott B, Garthwaite (2013) Cellular targets of nitric oxide in the hippocampus. PLoS One 8(2):e57292CrossRefPubMedCentralPubMedGoogle Scholar
  3. Bayer KU, LeBel E, McDonald GL, O’Leary H, Schulman H, De Koninck P (2006) Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. J Neurosci 26(4):1164–1174CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bednarek MA, Feighner SD, Pong SS, McKee KK, Hreniuk DL, Silva MV, Warren VA, Howard AD, Van Der Ploeg LH, Heck JV (2000) Structure-function studies on the new growth hormone-releasing peptide, ghrelin: minimal sequence of ghrelin necessary for activation of growth hormone secretagogue receptor 1a. J Med Chem 43(23):4370–4376CrossRefPubMedGoogle Scholar
  5. Bennett PA, Thomas GB, Howard AD, Feighner SD, van der Ploeg LH, Smith RG, Robinson IC (1997) Hypothalamic growth hormone secretagogue-receptor (GHS-R) expression is regulated by growth hormone in the rat. Endocrinology 138:4552–4557CrossRefPubMedGoogle Scholar
  6. Bibb JA, Mayford MR, Tsien JZ, Alberini CM (2010) Cognition enhancement strategies. J Neurosci 30:14987–14992CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347(6295):768–770CrossRefPubMedGoogle Scholar
  8. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84(5):757–767CrossRefPubMedGoogle Scholar
  9. Cao X, Cui Z, Feng R, Tang YP, Qin Z, Mei B, Tsien JZ (2007) Maintenance of superior learning and memory function in NR2B transgenic mice during ageing. Eur J Neurosci 25(6):1815–1822CrossRefPubMedGoogle Scholar
  10. Carlini VP, Monzón ME, Varas MM, Cragnolini AB, Schiöth HB, Scimonelli TN, de Barioglio SR (2002) Ghrelin increases anxiety-like behavior and memory retention in rats. Biochem Biophys Res Commun 299(5):739–743CrossRefPubMedGoogle Scholar
  11. Carlini VP, Varas MM, Cragnolini AB, Schiöth HB, Scimonelli TN, de Barioglio SR (2004) Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin. Biochem Biophys Res Commun 313(3):635–641CrossRefPubMedGoogle Scholar
  12. Carlini VP, Martini AC, Schiöth HB, Ruiz RD, Fiol de Cuneo M, de Barioglio SR (2008) Decreased memory for novel object recognition in chronically food-restricted mice is reversed by acute ghrelin administration. Neuroscience 153(4):929–934CrossRefPubMedGoogle Scholar
  13. Carlini VP, Perez MF, Salde E, Schiöth HB, Ramirez OA, de Barioglio SR (2010) Ghrelin induced memory facilitation implicates nitric oxide synthase activation and decrease in the threshold to promote LTP in hippocampal dentate gyrus. Physiol Behav 101:117–123CrossRefPubMedGoogle Scholar
  14. Collingridge GL, Volianskis A, Bannister N, France G, Hanna L, Mercier M, Tidball P, Fang G, Irvine MW, Costa BM (2013) The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 64:13–26CrossRefPubMedGoogle Scholar
  15. Crair MC, Malenka RC (1995) A critical period for long-term potentiation at thalamocortical synapses. Nature 375:325–328CrossRefPubMedGoogle Scholar
  16. Cuellar JN, Isokawa M (2011) Ghrelin-induced activation of cAMP signal transduction and its negative regulation by endocannabinoids in the hippocampus. Neuropharmacology 60(6):842–851CrossRefPubMedCentralPubMedGoogle Scholar
  17. Cui Y, Jin J, Zhang X, Xu H, Yang L, Du D, Zeng Q, Tsien JZ, Yu H, Cao X (2011) Forebrain NR2B overexpression facilitating the prefrontal cortex long-term potentiation and enhancing working memory function in mice. PLoS One 6(5):e20312CrossRefPubMedCentralPubMedGoogle Scholar
  18. Dos Santos VV, Rodrigues AL, De Lima TC, de Barioglio SR, Raisman-Vozari R, Prediger RD (2013) Ghrelin as a neuroprotective and palliative agent in Alzheimer’s and Parkinson’s disease. Curr Pharm Des 19(38):6773–6790CrossRefPubMedGoogle Scholar
  19. Dunkley PR, Heath JW, Harrison SM, Jarvie PE, Glenfield PJ, Rostas JA (1988) A rapid method for isolation of synaptosomes on Percoll gradients. Brain Res 441(1–2):59–71CrossRefPubMedGoogle Scholar
  20. Flores-Barrera E, Thomases DR, Heng LJ, Cass DK, Caballero A, Tseng KY (2014) Late adolescent expression of GluN2B transmission in the prefrontal cortex is input-specific and requires postsynaptic protein kinase A and D1 dopamine receptor signaling. Biol Psychiatry 75(6):508–516CrossRefPubMedCentralPubMedGoogle Scholar
  21. Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJ, Smith RG, Van der Ploeg LH, Howard AD (1997) Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 48:23–29CrossRefPubMedGoogle Scholar
  22. Hawasli AH, Benavides DR, Nguyen C, Kansy JW, Hayashi K, Chambon P, Greengard P, Powell CM, Cooper DC, Bibb JA (2007) Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat Neurosci 10(7):880–886CrossRefPubMedCentralPubMedGoogle Scholar
  23. Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJ, Dean DC, Melillo DG, Patchett AA, Nargund R, Griffin PR, DeMartino JA, Gupta SK, Schaeffer JM, Smith RG, Van der Ploeg LH (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273:974–977CrossRefPubMedGoogle Scholar
  24. Isokawa M (2012) Cellular signal mechanisms of reward-related plasticity in the hippocampus. Neural Plast 2012:945373PubMedCentralPubMedGoogle Scholar
  25. Izquierdo I, Medina JH (1997) Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 68:285–316CrossRefPubMedGoogle Scholar
  26. Izquierdo I, Bevilaqua LR, Rossato J, Bonini JS, Medina JH, Cammarota M (2006) Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci 29(9):496–505CrossRefPubMedGoogle Scholar
  27. Jacobs SA, Tsien JZ (2012) Genetic overexpression of NR2B subunit enhances social recognition memory for different strains and species. PLoS One 7:36387CrossRefGoogle Scholar
  28. Kohno D, Gao HZ, Muroya S, Kikuyama S, Yada T (2003) Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes 52(4):948–956CrossRefPubMedGoogle Scholar
  29. Kohno D, Sone H, Minokoshi Y, Yada T (2008) Ghrelin raises [Ca2+]i via AMPK in hypothalamic arcuate nucleus NPY neurons. Biochem Biophys Res Commun 366(2):388–392CrossRefPubMedGoogle Scholar
  30. Kojima M, Kangawa K (2005) Ghrelin: structure and function. Physiol Rev 85:495–522CrossRefPubMedGoogle Scholar
  31. Lago F, Gonzalez-Juanatey JR, Casanueva FF, Gomez-Reino J, Dieguez C (2005) Ghrelin, the same peptide for different functions: player or bystander? Vitam Horm 71:405–432CrossRefPubMedGoogle Scholar
  32. Lattuada D, Crotta K, Tonna N, Casnici C, Benfante R, Fornasari D, Bianco F, Longhi R, Marelli O (2013) The expression of GHS-R in primary neurons is dependent upon maturation stage and regional localization. PLoS One 8(6):e64183CrossRefPubMedCentralPubMedGoogle Scholar
  33. Lee YS, Silva AJ (2009) The molecular and cellular biology of enhanced cognition. Nat Rev Neurosci 10:126–140CrossRefPubMedCentralPubMedGoogle Scholar
  34. Medina JH, Bekinschtein P, Cammarota M, Izquierdo I (2008) Do memories consolidate to persist or do they persist to consolidate? Behav Brain Res 192(1):61–69CrossRefPubMedGoogle Scholar
  35. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12(3):529–540CrossRefPubMedGoogle Scholar
  36. Murphy JA, Stein IS, Lau CG, Peixoto RT, Aman TK, Kaneko N, Aromolaran K, Saulnier JL, Popescu GK, Sabatini BL, Hell JW, Zukin RS (2014) Phosphorylation of Ser1166 on GluN2B by PKA is critical to synaptic NMDA receptor function and Ca2+ signaling in spines. J Neurosci 34(3):869–879CrossRefPubMedCentralPubMedGoogle Scholar
  37. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198CrossRefPubMedGoogle Scholar
  38. Nicholls DG (2003) Bioenergetics and transmitter release in the isolated nerve terminal. Neurochem Res 28(10):1433–1441CrossRefPubMedGoogle Scholar
  39. Nicholls DG, Sihra TS, Sanchez-Prieto J (1987) Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry. J Neurochem 49(1):50–57CrossRefPubMedGoogle Scholar
  40. Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinates, compact, 6th edn. Academic, San DiegoGoogle Scholar
  41. Perez MF, Gabach LA, Almiron RS, Carlini VP, De Barioglio SR, Ramirez OA (2010) Different chronic cocaine administration protocols induce changes on dentate gyrus plasticity and hippocampal dependent behavior. Synapse 64(10):742–753PubMedGoogle Scholar
  42. Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64(1):51–68CrossRefPubMedGoogle Scholar
  43. Rauner C, Kohr G (2011) Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J Biol Chem 286:7558–7566CrossRefPubMedCentralPubMedGoogle Scholar
  44. Ribeiro LF, Catarino T, Santos SD, Benoist M, van Leeuwen JF, Esteban JA, Carvalho AL (2014) Ghrelin triggers the synaptic incorporation of AMPA receptors in the hippocampus. Proc Natl Acad Sci U S A 111(1):E149–E158CrossRefPubMedCentralPubMedGoogle Scholar
  45. Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, Yagi T, Aizawa S, Inoue Y, Sugiyama H et al (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373(6510):151–155CrossRefPubMedGoogle Scholar
  46. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368(6467):144–147CrossRefPubMedGoogle Scholar
  47. Smith RG, Leonard R, Bailey AR, Palyha O, Feighner S, Tan C, Mckee KK, Pong SS, Griffin P, Howard A (2001) Growth hormone secretagogue receptor family members and ligands. Endocrine 14:9–14, ReviewCrossRefPubMedGoogle Scholar
  48. Sprengel R, Suchanek B, Amico C, Brusa R, Burnashev N, Rozov A, Hvalby O, Jensen V, Paulsen O, Andersen P, Kim JJ, Thompson RF, Sun W, Webster LC, Grant SG, Eilers J, Konnerth A, Li J, McNamara JO, Seeburg PH (1998) Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92:279–289CrossRefPubMedGoogle Scholar
  49. Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ (1999) Genetic enhancement of learning and memory in mice. Nature 401(6748):63–69CrossRefPubMedGoogle Scholar
  50. Tang YP, Wang H, Feng R, Kyin M, Tsien JZ (2001) Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology 41:779–790CrossRefPubMedGoogle Scholar
  51. Teyler J, Di Scenna P (1987) Long-term potentiation. Annu Rev Neurosci 10:131–161CrossRefPubMedGoogle Scholar
  52. Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913CrossRefPubMedGoogle Scholar
  53. Valenzuela-Harrington M, Gruart A, Delgado-García JM (2007) Contribution of NMDA receptor NR2B subunit to synaptic plasticity during associative learning in behaving rats. Eur J Neurosci 25(3):830–836CrossRefPubMedGoogle Scholar
  54. Vilcaes AA, Furlan G, Roth GA (2009) Inhibition of Ca(2+)-dependent glutamate release from cerebral cortex synaptosomes of rats with experimental autoimmune encephalomyelitis. J Neurochem 108(4):881–890CrossRefPubMedGoogle Scholar
  55. Vincent SR, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46(4):755–784CrossRefPubMedGoogle Scholar
  56. von Engelhardt J, Doganci B, Jensen V, Hvalby Ø, Göngrich C, Taylor A, Barkus C, Sanderson DJ, Rawlins JN, Seeburg PH, Bannerman DM, Monyer H (2008) Contribution of hippocampal and extra-hippocampal NR2B-containing NMDA receptors to performance on spatial learning tasks. Neuron 60:846–860CrossRefGoogle Scholar
  57. Wang D, Cui Z, Zeng Q, Kuang H, Wang LP, Tsien JZ, Cao X (2009) Genetic enhancement of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats. PLoS One 4(10):e7486CrossRefPubMedCentralPubMedGoogle Scholar
  58. Yang Y, Atasoy D, Su HH, Sternson SM (2011) Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146(6):992–1003CrossRefPubMedCentralPubMedGoogle Scholar
  59. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494:528–548CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marisa S. Ghersi
    • 1
  • L. A. Gabach
    • 1
  • F. Buteler
    • 1
  • A. A. Vilcaes
    • 2
  • H. B. Schiöth
    • 3
  • M. F. Perez
    • 1
  • S. R. de Barioglio
    • 1
  1. 1.Dpto. de Farmacología, Facultad de Ciencias Químicas, Instituto de Farmacología Experimental de Córdoba, IFEC-CONICETUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
  3. 3.Department of Neuroscience, Functional PharmacologyUppsala UniversityUppsalaSweden

Personalised recommendations