Advertisement

Psychopharmacology

, Volume 232, Issue 2, pp 399–409 | Cite as

D-serine plasma concentration is a potential biomarker of (R,S)-ketamine antidepressant response in subjects with treatment-resistant depression

  • Ruin Moaddel
  • David A. Luckenbaugh
  • Ying Xie
  • Alma Villaseñor
  • Nancy E. Brutsche
  • Rodrigo Machado-Vieira
  • Anuradha Ramamoorthy
  • Maria Paz Lorenzo
  • Antonia Garcia
  • Michel Bernier
  • Marc C. Torjman
  • Coral Barbas
  • Carlos A. ZarateJr.
  • Irving W. WainerEmail author
Original Investigation

Abstract

Rationale

(R,S)-ketamine is a rapid and effective antidepressant drug that produces a response in two thirds of patients with treatment-resistant depression (TRD). The underlying biochemical differences between a (R,S)-ketamine responder (KET-R) and non-responder (KET-NR) have not been definitively identified but may involve serine metabolism.

Objectives

The aim of the study was to examine the relationship between baseline plasma concentrations of D-serine and its precursor L-serine and antidepressant response to (R,S)-ketamine in TRD patients.

Methods

Plasma samples were obtained from 21 TRD patients at baseline, 60 min before initiation of the (R,S)-ketamine infusion. Patients were classified as KET-Rs (n = 8) or KET-NRs (n = 13) based upon the difference in Montgomery–Åsberg Depression Rating Scale (MADRS) scores at baseline and 230 min after infusion, with response defined as a ≥50 % decrease in MADRS score. The plasma concentrations of D-serine and L-serine were determined using liquid chromatography-mass spectrometry.

Results

Baseline D-serine plasma concentrations were significantly lower in KET-Rs (3.02 ± 0.21 μM) than in KET-NRs (4.68 ± 0.81 μM), p < 0.001. A significant relationship between baseline D-serine plasma concentrations and percent change in MADRS at 230 min was determined using a Pearson correlation, r = 0.77, p < 0.001, with baseline D-serine explaining 60 % of the variance in (R,S)-ketamine response. The baseline concentrations of L-serine (L-Ser) in KET-Rs were also significantly lower than those measured in KET-NRs (66.2 ± 9.6 μM vs 242.9 ± 5.6 μM, respectively; p < 0.0001).

Conclusions

The results demonstrate that the baseline D-serine plasma concentrations were significantly lower in KET-Rs than in KET-NRs and suggest that this variable can be used to predict an antidepressant response following (R,S)-ketamine administration.

Keywords

(R,S)-ketamine Antidepressant Treatment-resistant depression Bipolar depression D-serine N-methyl-D-aspartate receptor Serine racemase Plasma response marker 

Notes

Acknowledgments

This work was supported in part by the Intramural Research Programs of the National Institute on Aging (IWW) and National Institute of Mental Health (CAZ) of the National Institutes of Health (NIH) and the Spanish Ministry of Science and Technology (MCIT) grant CTQ2011-23562 (CB). A. V. acknowledges her fellowship provided by EADS CASA.

References

  1. Alexander GM, Reichenberger E, Peterlin BL, Perreault MJ, Grothusen JR, Schwartzman R (2013) Plasma amino acid changes in complex regional pain syndrome. Pain Res Treat 2013:742407PubMedCentralPubMedGoogle Scholar
  2. Altamura C, Maes M, Dai J, Meltzer HY (1995) Plasma concentration of excitatory amino acids, serine, glycine, taurine and histidine in major depression. Eur Neuropsychopharmacol 5(Suppl):71–75PubMedCrossRefGoogle Scholar
  3. Browne CA, Lucki I (2013) Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants. Front Pharmacol 4:161PubMedCentralPubMedCrossRefGoogle Scholar
  4. Calcia MA, Maderia C, Alheira FV, Silva TCS, Tannos FM, Vargas-Lopes C, Goldenstein N, Brasil MC, Ferreira ST, Panizzutti R (2012) Plasma levels of D-serine in Brazilian individuals with schizophrenia. Schizophr Res 142:83–87PubMedCrossRefGoogle Scholar
  5. Crous-Bou M, RennertG SR, Rodriquez-Moranta F, Rennert HS, Lejbkowicz F, Kopelovich L, Lipkin SM, Gruber SB, Moreno V (2012) Genetic polymorphisms in fatty acid metabolism genes and colorectal cancer. Mutagenesis 27:169–176PubMedCentralPubMedCrossRefGoogle Scholar
  6. Crow JP, Marecki JC, Thompson M (2012) D-Serine production, degradation and transport in ALS: critical role of methodology. Neurol Res Int 2012:625245PubMedCentralPubMedGoogle Scholar
  7. Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato M, Kumakiri C, Okada S, Hasegawa H, Imai K, Iyo M (2003) Decreased serum levels of D-serine in patients with schizophrenia. Evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 60:572–576PubMedCrossRefGoogle Scholar
  8. Henneberger C, Papouin T, Oliet SHR, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463:232–236PubMedCentralPubMedCrossRefGoogle Scholar
  9. Henneberger C, Bard L, King C, Jennings A, Rusahov (2013) NMDA receptor activation: two targets for two co-agonists. Neurochem Res 38:1156–1162PubMedCrossRefGoogle Scholar
  10. Hopkins SC, Campbell UC, Heffernan MLR, Spear KL, Jeggo RD, Spanswick DC, Varney MA, Large TH (2013) Effects of D-amino oxidase inhibition on memory performance and long-term potentiation invivo. Pharm Res Per 1:e007. doi: 10.1002/prp2.7 Google Scholar
  11. Horrobin DF, Bennett CN (1999) Depression and bipolar disorder: relationship to impaired fatty acid and phospholipid metabolism and to diabetes, cardiovascular disease, immunological abnormalities, cancer, ageing and osteoporosis. Prostaglandins Leukot Essent Fat Acids 60:217–234CrossRefGoogle Scholar
  12. Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM (1989) Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 83:1168–1173PubMedCentralPubMedCrossRefGoogle Scholar
  13. Ji Y, Hebbring S, Zhu H, Jenkins GD, Biernacka J, Snyder K, Drews M, Fiehn O, Zeng Z, Schaid D, Mrazek DA, Kaddurah-Daouk R, Weinshilboum RM (2011) Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics-informed pharmacogenomics. Clin Pharmacol Ther 89:97–104PubMedCentralPubMedCrossRefGoogle Scholar
  14. Jiraskova-Vanickova J, Ettrich R, Vorlova B, Hoffman HE, Lepsik M, Jansa P, Konvalenka J (2011) Inhibition of human serine racemase, an emerging target for medicinal chemistry. Curr Drug Targets 12:1037–1055PubMedCrossRefGoogle Scholar
  15. Labrie V, Roder JC (2010) The involvement of NMDA receptor D-serine/glycine site in the pathophysiology and treatment of schizophrenia. Neurosci Biobehav Rev 34:351–372PubMedCrossRefGoogle Scholar
  16. Lehninger AL, Nelson DL, Cox MM (1993) Principles of biochemistry, 2nd edn. Worth Publishers, New YorkGoogle Scholar
  17. Luckenbaugh DA, Niciu MJ, Ionescu DF, Nolan NM, Richards EM, Brutsche NE, Guevara S, Zarate CA Jr (2014) Do the dissociative side effects of ketamine mediate its antidepressant effects? J Affect Disord 159:56–61PubMedCrossRefGoogle Scholar
  18. Machado-Vieira R, Salvadore G, Luckenbaugh DA, Manji HK, Zarate CA Jr (2008) Rapid onset of antidepressant action: a new paradigm in the research and treatment of major depressive disorder. J Clin Psychiatry 69:946–958PubMedCentralPubMedCrossRefGoogle Scholar
  19. Maes M, Verkerk R, Vandoolaeghe E, Lin A, Scharpé S (1998) Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine, alanine and arginine in treatment-resistant depression: modulation by treatment with antidepressants and prediction of clinical responsitivity. Acta Psychiatr Scand 97:302–308PubMedCrossRefGoogle Scholar
  20. Mitani H, Shirayama Y, Yamada T, Maeda K, Ashby CR Jr, Kawahara R (2006) Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Prog Neuropsychopharmacol Biol Psychiatry 30:1155–1158PubMedCrossRefGoogle Scholar
  21. Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM, Iqbal S, Pillemer S, Foulkes A, Shah A, Charney DS, Mathew SJ (2013) Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 170:1134–1142PubMedCentralPubMedCrossRefGoogle Scholar
  22. Murrough JW, Wan L-B, Iacovicello B, Collins KA, Solon C, Glicksberg B, Perez AM, Mathew SJ, Charney DS, Iosifescu DV, Burdick KE (2014) Neurocognitive effects of ketamine in treatment-resistant major depression: association with antidepressant response. Psychopharmacology 231:481–488CrossRefGoogle Scholar
  23. Niciu MJ, Henter ID, Luckenbaugh DA, Zarate CA Jr, Charney DS (2014a) Glutamate receptor antagonists as fast-acting therapeutic alternatives for the treatment of depression: ketamine and other compounds. Ann Rev Pharmacol Toxicol 54:119–139CrossRefGoogle Scholar
  24. Niciu MJ, Luckenbaugh DA, Ionescu DF, Guevara S, Machado-Vieira R, Richards EM, Brutsche NE, Nolan NM, Zarate CA Jr (2014b) Clinical predictors of ketamine response in treatment-resistant major depression. J Clin Psychiatry 75:e417–e423Google Scholar
  25. Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet J-P, Oliet SHR (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150:633–646PubMedCrossRefGoogle Scholar
  26. Paul RK, Singh NS, Khadeer M, Moaddel R, Sanghvi M, Green CE, O’Loughlin K, Torjman MC, Bernier M, Wainer IW (2014) (R, S)-Norketamine and (2S,6S)-hydroxynorketamine increase the mammalian target of rapamycin (mTOR) function. Anesthesiology 121:149–159PubMedCrossRefGoogle Scholar
  27. Pomarol-Clotet E, Honey GD, Murray GK, Corlett PR, Absalom AR, Lee M, McKenna PJ, Bullmore ET, Fletcher PC (2006) Psychological effects of ketamine in healthy volunteers: phenomenological study. Br J Psychiatry 189:173–179PubMedCrossRefGoogle Scholar
  28. Singh NS, Paul RK, Sichier M, Moaddel R, Bernier M, Wainer IW (2012) Capillary electrophoresis-laser-induced fluorescence (CE-LIF) assay for measurement of intracellular D-serine and serine racemase activity. Anal Biochem 421:460–466Google Scholar
  29. Singh NS, Paul RK, Ramamoorthy A, Torjman MC, Moaddel R, Bernier M, Wainer IW (2013) Nicotinic acetylcholine receptor antagonists alter the function and expression of serine racemase in PC-12 and 1321N1 cells. Cell Signal 25:2634–2646PubMedCrossRefGoogle Scholar
  30. Snell K, Fell DA (1990) Metabolic control analysis of mammalian serine metabolism. Adv Enzym Regul 30:13–32CrossRefGoogle Scholar
  31. Tabatabaie L, Klomp LW, Berger R, de Koning TJ (2010) L-Serine synthesis in the central nervous system: a review on serine deficiency disorders. Mol Genet Metab 99:256–262PubMedCrossRefGoogle Scholar
  32. Villaseñor A, Ramamoorthy A, Silva dos Santos M, Lorenzo MP, Laje G, Zarate C Jr, Barbas C, Wainer IW (2014) A pilot study of plasma metabolomic patterns from patients treated with ketamine for bipolar depression: evidence for a response-related difference in mitochondrial networks. Br J Pharmacol 171:2230–2242PubMedCrossRefGoogle Scholar
  33. Xie Y, Alexander GM, Schwartzman RJ, Singh N, Torjman M, Goldberg M, Wainer IW, Moaddel R (2014) Development and validation of a sensitive LC-MS/MS method for the determination of D-serine in human plasma. J Pharm Biomed Anal 89:1–5PubMedCrossRefGoogle Scholar
  34. Yang JH, Wada A, Yoshida K, Miyoshi Y, Sayano T, Esaki K, Kinoshita MO, Tomonaga S, Azuma N, Watanabe M, Hamase K, Zaitsu K, Machida T, Messing A, Itochara S, Hirabayashi Y, Furuya S (2010) Brain-specific Phgdh deletion reveals a pivotal role for L-serine biosynthesis in controlling the level of D-serine, an N-methyl-D-aspartate receptor co-agonist, in adult brain. J Biol Chem 285:41380–41390PubMedCentralPubMedCrossRefGoogle Scholar
  35. Zarate CA Jr, Brutsche N, Laje G, Luckenbaugh DA, Venkata SLV, Ramamoorthy A, Moaddel R, Wainer IW (2012) Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression. Biol Psychiatry 72:331–338PubMedCentralPubMedCrossRefGoogle Scholar
  36. Zheng P, Wang Y, Chen L, Yang D, Meng H, Zhou D, Zhong J, Lei Y, Melgiri ND, Xie P (2013) Identification and validation of urinary metabolite biomarkers for major depressive disorder. Mol Cell Proteomics 12:207–214PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2014

Authors and Affiliations

  • Ruin Moaddel
    • 1
  • David A. Luckenbaugh
    • 2
  • Ying Xie
    • 1
  • Alma Villaseñor
    • 3
  • Nancy E. Brutsche
    • 2
  • Rodrigo Machado-Vieira
    • 2
  • Anuradha Ramamoorthy
    • 1
  • Maria Paz Lorenzo
    • 3
  • Antonia Garcia
    • 3
  • Michel Bernier
    • 1
  • Marc C. Torjman
    • 4
  • Coral Barbas
    • 3
  • Carlos A. ZarateJr.
    • 2
  • Irving W. Wainer
    • 1
    • 4
    • 5
    Email author
  1. 1.Intramural Research Program, National Institute on AgingNational Institutes of Health (NIH)BaltimoreUSA
  2. 2.Experimental Therapeutics & Pathophysiology Branch Intramural Research Program, National Institute of Mental Health (NIMH)NIHBethesdaUSA
  3. 3.Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de FarmaciaUniversidad CEU San PabloMadridSpain
  4. 4.Department of AnesthesiologyCooper Medical School of Rowan UniversityCamdenUSA
  5. 5.Bioanalytical and Drug Discovery Unit, Laboratory of Clinical InvestigationNational Institute on Aging, National Institutes of HealthBaltimoreUSA

Personalised recommendations