, Volume 231, Issue 22, pp 4371–4381 | Cite as

Differential regulation of observational fear and neural oscillations by serotonin and dopamine in the mouse anterior cingulate cortex

  • Byung Sun Kim
  • Junghee Lee
  • Minji Bang
  • Bo Am Seo
  • Arshi Khalid
  • Min Whan Jung
  • Daejong Jeon
Original Investigation



The aberrant regulation of serotonin (5-HT) and dopamine (DA) in the brain has been implicated in neuropsychiatric disorders associated with marked impairments in empathy, such as schizophrenia and autism. Many psychiatric drugs bind to both types of receptors, and the anterior cingulate cortex (ACC) is known to be centrally involved with empathy. However, the relationship between the 5-HT/DA system in the ACC and empathic behavior is not yet well known.


We investigated the role of 5-HT/DA in empathy-like behavior and in the regulation of ACC neural activity.


An observational fear learning task was conducted following microinjections of 5-HT, DA, 5-HT and DA, methysergide (5-HT receptor antagonist), SCH-23390 (DA D1 receptor antagonist), or haloperidol (DA D2 receptor antagonist) into the mouse ACC. The ACC neural activity influenced by 5-HT and DA was electrophysiologically characterized in vitro and in vivo.


The microinjection of haloperidol, but not methysergide or SCH-23390, decreased the fear response of observing mice. The administration of 5-HT and 5-HT and DA together, but not DA alone, reduced the freezing response of observing mice. 5-HT enhanced delta-band activity and reduced alpha- and gamma-band activities in the ACC, whereas DA reduced only alpha-band activity. Based on entropy, reduced complexity of ACC neural activity was observed with 5-HT treatment.


The current results demonstrated that DA D2 receptors in the ACC are required for observational fear learning, whereas increased 5-HT levels disrupt observational fear and alter the regularity of ACC neural oscillations.


Serotonin Dopamine Anterior cingulate cortex Empathy Observational fear Neural activity Entropy 



This work was supported by the Korea Health 21 R&D grant (HI12C0035) funded by Ministry of Health and Welfare, and M.W.J was supported by the Research Center Program of the Institute for Basic Science, Korea.

Conflict of interest

The authors report no conflicts of interest.

Supplementary material

213_2014_3581_MOESM1_ESM.pdf (12 kb)
ESM 1 (PDF 11 kb)


  1. Abasolo D, Hornero R, Espino P, Poza J, Sanchez CI, de la Rosa R (2005) Analysis of regularity in the EEG background activity of Alzheimer’s disease patients with approximate entropy. Clin Neurophysiol 116:1826–1834PubMedCrossRefGoogle Scholar
  2. Aghajanian GK, Marek GJ (1999) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res 825:161–171PubMedCrossRefGoogle Scholar
  3. Alcaro A, Huber R, Panksepp J (2007) Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain Res Rev 56:283–321PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aragona BJ, Liu Y, Yu YJ, Curtis JT, Detwiler JM, Insel TR, Wang Z (2006) Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nat Neurosci 9:133–139PubMedCrossRefGoogle Scholar
  5. Arato M, Frecska E, Maccrimmon DJ, Guscott R, Saxena B, Tekes K, Tothfalusi L (1991) Serotonergic interhemispheric asymmetry: neurochemical and pharmaco-EEG evidence. Prog Neuro-Psychopharmacol Biol Psychiatry 15:759–764CrossRefGoogle Scholar
  6. Bandyopadhyay S, Hablitz JJ (2007) Dopaminergic modulation of local network activity in rat prefrontal cortex. J Neurophysiol 97:4120–4128PubMedCrossRefGoogle Scholar
  7. Ben-Ami Bartal I, Decety J, Mason P (2011) Empathy and pro-social behavior in rats. Science 334:1427–1430PubMedCrossRefGoogle Scholar
  8. Benedetti F, Bernasconi A, Bosia M, Cavallaro R, Dallaspezia S, Falini A, Poletti S, Radaelli D, Riccaboni R, Scotti G, Smeraldi E (2009) Functional and structural brain correlates of theory of mind and empathy deficits in schizophrenia. Schizophr Res 114:154–160PubMedCrossRefGoogle Scholar
  9. Benes FM, Todtenkopf MS, Taylor JB (1997) Differential distribution of tyrosine hydroxylase fibers on small and large neurons in layer II of anterior cingulate cortex of schizophrenic brain. Synapse 25:80–92PubMedCrossRefGoogle Scholar
  10. Betancur C, Corbex M, Spielewoy C, Philippe A, Laplanche JL, Launay JM, Gillberg C, Mouren-Simeoni MC, Hamon M, Giros B, Nosten-Bertrand M, Leboyer M (2002) Serotonin transporter gene polymorphisms and hyperserotonemia in autistic disorder. Mol Psychiatry 7:67–71PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brooks J, Tracey I (2005) From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat 207:19–33PubMedCrossRefPubMedCentralGoogle Scholar
  12. Burnet PW, Eastwood SL, Harrison PJ (1996) 5-HT1A and 5-HT2A receptor mRNAs and binding site densities are differentially altered in schizophrenia. Neuropsychopharmacology 15:442–455PubMedCrossRefGoogle Scholar
  13. Carr DB, Cooper DC, Ulrich SL, Spruston N, Surmeier DJ (2002) Serotonin receptor activation inhibits sodium current and dendritic excitability in prefrontal cortex via a protein kinase C-dependent mechanism. J Neurosci 22:6846–6855PubMedGoogle Scholar
  14. Catarino A, Churches O, Baron-Cohen S, Andrade A, Ring H (2011) Atypical EEG complexity in autism spectrum conditions: a multiscale entropy analysis. Clin Neurophysiol 122:2375–2383PubMedCrossRefGoogle Scholar
  15. Charman T, Swettenham J, Baron-Cohen S, Cox A, Baird G, Drew A (1997) Infants with autism: an investigation of empathy, pretend play, joint attention, and imitation. Dev Psychol 33:781–789PubMedCrossRefGoogle Scholar
  16. Coben R, Clarke AR, Hudspeth W, Barry RJ (2008) EEG power and coherence in autistic spectrum disorder. Clin Neurophysiol 119:1002–1009PubMedCrossRefGoogle Scholar
  17. Comings DE, Comings BG, Muhleman D, Dietz G, Shahbahrami B, Tast D, Knell E, Kocsis P, Baumgarten R, Kovacs BW, Levy DL, Smith M, Borison RL, Evans DD, Klein DN, Macmurray J, Tosk JM, Sverd J, Gysin R, Flanagan SD (1991) The dopamine-D2 receptor locus as a modifying gene in neuropsychiatric disorders. JAMA 266:1793–1800PubMedCrossRefGoogle Scholar
  18. Day M, Olson PA, Platzer J, Striessnig J, Surmeier DJ (2002) Stimulation of 5-HT2 receptors in prefrontal pyramidal neurons inhibits Ca(v)1.2 L-type Ca2+ currents via a PLC beta/IP3/calcineurin signaling cascade. J Neurophysiol 87:2490–2504PubMedGoogle Scholar
  19. de Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526:125–139PubMedCrossRefGoogle Scholar
  20. Decety J, Norman GJ, Berntson GG, Cacioppo JT (2012) A neurobehavioral evolutionary perspective on the mechanisms underlying empathy. Prog Neurobiol 98:38–48PubMedCrossRefGoogle Scholar
  21. DeLisi LE, Neckers LM, Weinberger DR, Wyatt RJ (1981) Increased whole blood serotonin concentrations in chronic schizophrenic patients. Arch Gen Psychiatry 38:647–650PubMedCrossRefGoogle Scholar
  22. Derntl B, Finkelmeyer A, Toygar TK, Hulsmann A, Schneider F, Falkenberg DI, Habel U (2009) Generalized deficit in all core components of empathy in schizophrenia. Schizophr Res 108:197–206PubMedCrossRefGoogle Scholar
  23. Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118(Pt 1):279–306PubMedCrossRefGoogle Scholar
  24. Dolan RJ, Fletcher P, Frith CD, Friston KJ, Frackowiak RS, Grasby PM (1995) Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature 378:180–182PubMedCrossRefGoogle Scholar
  25. Dollfus S, Petit M, Launay JM, Callebert J, Boudou P, Dreux C, Menard JF (1992) Platelet serotonin in infantile autism. Cross-over effects of a dopamine agonist and an antagonist. L'Encéphale 18:605–610PubMedGoogle Scholar
  26. Eisenberg N, Miller PA (1987) The relation of empathy to prosocial and related behaviors. Psychol Bull 101:91–119PubMedCrossRefGoogle Scholar
  27. Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15:85–93PubMedCrossRefPubMedCentralGoogle Scholar
  28. Faure P, Korn H (2001) Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation. C R Acad Sci Iii-Vie 324:773–793CrossRefGoogle Scholar
  29. Garelis E, Gillin JC, Wyatt RJ, Neff N (1975) Elevated blood serotonin concentrations in unmediated chronic schizophrenic patients: a preliminary study. Am J Psychiatry 132:184–186PubMedGoogle Scholar
  30. Gonzalez-Islas C, Hablitz JJ (2001) Dopamine inhibition of evoked IPSCs in rat prefrontal cortex. J Neurophysiol 86:2911–2918PubMedGoogle Scholar
  31. Gonzalez-Islas C, Hablitz JJ (2003) Dopamine enhances EPSCs in layer II-III pyramidal neurons in rat prefrontal cortex. J Neurosci 23:867–875PubMedGoogle Scholar
  32. Grenier F, Luthi A (2010) Mouse brains wired for empathy? Nat Neurosci 13:406–408PubMedCrossRefGoogle Scholar
  33. Gulledge AT, Jaffe DB (2001) Multiple effects of dopamine on layer V pyramidal cell excitability in rat prefrontal cortex. J Neurophysiol 86:586–595PubMedGoogle Scholar
  34. Hajós M (2003) In vivo inhibition of neuronal activity in the rat ventromedial prefrontal cortex by midbrain-raphe nuclei: role of 5-HT1A receptors. Neuropharmacology 45:72–81PubMedCrossRefGoogle Scholar
  35. Hajos M, Hajos-Korcsok E, Sharp T (1999) Role of the medial prefrontal cortex in 5-HT1A receptor-induced inhibition of 5-HT neuronal activity in the rat. Br J Pharmacol 126:1741–1750PubMedCrossRefPubMedCentralGoogle Scholar
  36. Herman ZS (1975) Behavioural changes induced in conscious mice by intracerebroventricular injection of catecholamines, acetylcholine and 5-hydroxytryptamine. Br J Pharmacol 55:351–358PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hodges H, Green S, Glenn B (1987) Evidence that the amygdala is involved in benzodiazepine and serotonergic effects on punished responding but not on discrimination. Psychopharmacology 92:491–504PubMedCrossRefGoogle Scholar
  38. Hoffman ML (1977) Empathy, its development and prosocial implications. Neb Symp Motiv 25:169–217Google Scholar
  39. Hranilovic D, Bujas-Petkovic Z, Vragovic R, Vuk T, Hock K, Jernej B (2007) Hyperserotonemia in adults with autistic disorder. J Autism Dev Disord 37:1934–1940PubMedCrossRefGoogle Scholar
  40. Jeon D, Shin HS (2011) A mouse model for observational fear learning and the empathetic response. Current protocols in neuroscience/editorial board, Jacqueline N Crawley [et al] Chapter 8: Unit 8 27Google Scholar
  41. Jeon D, Song I, Guido W, Kim K, Kim E, Oh U, Shin HS (2008) Ablation of Ca2+ channel beta3 subunit leads to enhanced N-methyl-D-aspartate receptor-dependent long term potentiation and improved long term memory. J Biol Chem 283:12093–12101PubMedCrossRefPubMedCentralGoogle Scholar
  42. Jeon D, Kim S, Chetana M, Jo D, Ruley HE, Lin SY, Rabah D, Kinet JP, Shin HS (2010) Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nat Neurosci 13:482–488PubMedCrossRefPubMedCentralGoogle Scholar
  43. Johansen JP, Fields HL, Manning BH (2001) The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci U S A 98:8077–8082PubMedCrossRefPubMedCentralGoogle Scholar
  44. Jones NA, Field T, Davalos M (2000) Right frontal EEG asymmetry and lack of empathy in preschool children of depressed mothers. Child Psychiatry Hum Dev 30:189–204PubMedCrossRefGoogle Scholar
  45. Jones NA, Field T, Davalos M, Hart S (2004) Greater right frontal EEG asymmetry and nonemphathic behavior are observed in children prenatally exposed to cocaine. Int J Neurosci 114:459–480PubMedCrossRefGoogle Scholar
  46. Jones AP, Happe FG, Gilbert F, Burnett S, Viding E (2010) Feeling, caring, knowing: different types of empathy deficit in boys with psychopathic tendencies and autism spectrum disorder. J Child Psychol Psychiatry Allied Discip 51:1188–1197CrossRefGoogle Scholar
  47. Joyce JN, Shane A, Lexow N, Winokur A, Casanova MF, Kleinman JE (1993) Serotonin uptake sites and serotonin receptors are altered in the limbic system of schizophrenics. Neuropsychopharmacology 8:315–336PubMedCrossRefGoogle Scholar
  48. Jung S, Yang H, Kim BS, Chu K, Lee SK, Jeon D (2012) The immunosuppressant cyclosporin A inhibits recurrent seizures in an experimental model of temporal lobe epilepsy. Neurosci Lett 529:133–138PubMedCrossRefGoogle Scholar
  49. Knyazev GG (2007) Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci Biobehav Rev 31:377–395PubMedCrossRefGoogle Scholar
  50. Ko JH, Ptito A, Monchi O, Cho SS, Van Eimeren T, Pellecchia G, Ballanger B, Rusjan P, Houle S, Strafella AP (2009) Increased dopamine release in the right anterior cingulate cortex during the performance of a sorting task: a [11C]FLB 457 PET study. NeuroImage 46:516–521PubMedCrossRefPubMedCentralGoogle Scholar
  51. Korsgaard S, Gerlach J, Christensson E (1985) Behavioral aspects of serotonin–dopamine interaction in the monkey. Eur J Pharmacol 118:245–252PubMedCrossRefGoogle Scholar
  52. Kovacs GL, de Wied D (1978) Effects of amphetamine and haloperidol on avoidance behavior and exploratory activity. Eur J Pharmacol 53:103–107PubMedCrossRefGoogle Scholar
  53. Kuroki T, Nagao N, Nakahara T (2008) Neuropharmacology of second-generation antipsychotic drugs: a validity of the serotonin–dopamine hypothesis. Prog Brain Res 172:199–212PubMedCrossRefGoogle Scholar
  54. Landolt HP, Meier V, Burgess HJ, Finelli LA, Cattelin F, Achermann P, Borbely AA (1999) Serotonin-2 receptors and human sleep: effect of a selective antagonist on EEG power spectra. Neuropsychopharmacology 21:455–466PubMedCrossRefGoogle Scholar
  55. Langford DJ, Crager SE, Shehzad Z, Smith SB, Sotocinal SG, Levenstadt JS, Chanda ML, Levitin DJ, Mogil JS (2006) Social modulation of pain as evidence for empathy in mice. Science 312:1967–1970PubMedCrossRefGoogle Scholar
  56. Lesch KP, Merschdorf U (2000) Impulsivity, aggression, and serotonin: a molecular psychobiological perspective. Behav Sci Law 18:581–604PubMedCrossRefGoogle Scholar
  57. Lipska BK, Khaing ZZ, Weickert CS, Weinberger DR (2001) BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs. Eur J Neurosci 14:135–144PubMedCrossRefGoogle Scholar
  58. Liu RJ, Aghajanian GK (2008) Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc Natl Acad Sci U S A 105:359–364PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lysaker PH, Hasson-Ohayon I, Kravetz S, Kent JS, Roe D (2013) Self perception of empathy in schizophrenia: emotion recognition, insight, and symptoms predict degree of self and interviewer agreement. Psychiatry Res 206:146–150PubMedCrossRefGoogle Scholar
  60. Magill PJ, Bolam JP, Bevan MD (2001) Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus–globus pallidus network. Neuroscience 106:313–330PubMedCrossRefGoogle Scholar
  61. Mani SK, Fienberg AA, O'Callaghan JP, Snyder GL, Allen PB, Dash PK, Moore AN, Mitchell AJ, Bibb J, Greengard P, O'Malley BW (2000) Requirement for DARPP-32 in progesterone-facilitated sexual receptivity in female rats and mice. Science 287:1053–1056PubMedCrossRefGoogle Scholar
  62. Martres MP, Bouthenet ML, Sales N, Sokoloff P, Schwartz JC (1985) Widespread distribution of brain dopamine receptors evidenced with [125I]iodosulpride, a highly selective ligand. Science 228:752–755PubMedCrossRefGoogle Scholar
  63. Meneses A, Liy-Salmeron G (2012) Serotonin and emotion, learning and memory. Rev Neurosci 23:543–553PubMedCrossRefGoogle Scholar
  64. Meyer ME, Cottrell GA, Van Hartesveldt C (1993) Intracerebral haloperidol potentiates the dorsal immobility response in the rat. Pharmacol Biochem Behav 44:157–160PubMedCrossRefGoogle Scholar
  65. Monassi CR, Menescal-de-Oliveira L (2004) Serotonin 5-HT2 and 5-HT1A receptors in the periaqueductal gray matter differentially modulate tonic immobility in guinea pig. Brain Res 1009:169–180PubMedCrossRefGoogle Scholar
  66. Muller MM, Keil A, Gruber T, Elbert T (1999a) Processing of affective pictures modulates right-hemispheric gamma band EEG activity. Clin Neurophysiol 110:1913–1920PubMedCrossRefGoogle Scholar
  67. Muller RA, Behen ME, Rothermel RD, Chugani DC, Muzik O, Mangner TJ, Chugani HT (1999b) Brain mapping of language and auditory perception in high-functioning autistic adults: a PET study. J Autism Dev Disord 29:19–31PubMedCrossRefGoogle Scholar
  68. Mundy P (2003) Annotation: the neural basis of social impairments in autism: the role of the dorsal medial-frontal cortex and anterior cingulate system. J Child Psychol Psychiatry Allied Discip 44:793–809CrossRefGoogle Scholar
  69. Nakamura K, Sekine Y, Ouchi Y, Tsujii M, Yoshikawa E, Futatsubashi M, Tsuchiya KJ, Sugihara G, Iwata Y, Suzuki K, Matsuzaki H, Suda S, Sugiyama T, Takei N, Mori N (2010) Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch Gen Psychiatry 67:59–68PubMedCrossRefGoogle Scholar
  70. Nieoullon A, Coquerel A (2003) Dopamine: a key regulator to adapt action, emotion, motivation and cognition. Curr Opin Neurol 16(Suppl 2):S3–S9PubMedCrossRefGoogle Scholar
  71. Ochi T, Goto T (2000) The antinociceptive effect induced by FR140423 is mediated through spinal 5-HT2A and 5-HT3 receptors. Eur J Pharmacol 409:167–172PubMedCrossRefGoogle Scholar
  72. Olsson A, Nearing KI, Phelps EA (2007) Learning fears by observing others: the neural systems of social fear transmission. Soc Cogn Affect Neurosci 2:3–11PubMedCrossRefPubMedCentralGoogle Scholar
  73. Ongini E, Caporali MG, Massotti M (1985) Stimulation of dopamine D-1 receptors by SKF 38393 induces EEG desynchronization and behavioral arousal. Life Sci 37:2327–2333PubMedCrossRefGoogle Scholar
  74. Panksepp JB, Lahvis GP (2011) Rodent empathy and affective neuroscience. Neurosci Biobehav Rev 35:1864–1875PubMedCrossRefPubMedCentralGoogle Scholar
  75. Panksepp J, Panksepp JB (2013) Toward a cross-species understanding of empathy. Trends Neurosci 36:489–496PubMedCrossRefGoogle Scholar
  76. Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346:205–230PubMedCrossRefGoogle Scholar
  77. Pazos A, Cortes R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249PubMedCrossRefGoogle Scholar
  78. Phillips ML, Drevets WC, Rauch SL, Lane R (2003) Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry 54:515–528PubMedCrossRefGoogle Scholar
  79. Pohjalainen T, Rinne JO, Nagren K, Lehikoinen P, Anttila K, Syvalahti EK, Hietala J (1998) The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry 3:256–260PubMedCrossRefGoogle Scholar
  80. Preston SD, de Waal FBM (2002) Empathy: its ultimate and proximate bases. Behav Brain Sci 25:1–20PubMedGoogle Scholar
  81. Richtand NM, Welge JA, Logue AD, Keck PE Jr, Strakowski SM, McNamara RK (2007) Dopamine and serotonin receptor binding and antipsychotic efficacy. Neuropsychopharmacology 32:1715–1726PubMedCrossRefGoogle Scholar
  82. Seo J, Jung S, Lee SY, Yang H, Kim BS, Choi J, Bang M, Shin HS, Jeon D (2013) Early deficits in social behavior and cortical rhythms in pilocarpine-induced mouse model of temporal lobe epilepsy. Exp Neurol 241:38–44PubMedCrossRefGoogle Scholar
  83. Shin RM, Masuda M, Miura M, Sano H, Shirasawa T, Song WJ, Kobayashi K, Aosaki T (2003) Dopamine D4 receptor-induced postsynaptic inhibition of GABAergic currents in mouse globus pallidus neurons. J Neurosci 23:11662–11672PubMedGoogle Scholar
  84. Singer T, Lamm C (2009) The social neuroscience of empathy. Ann N Y Acad Sci 1156:81–96PubMedCrossRefGoogle Scholar
  85. Singer T, Seymour B, O'Doherty J, Kaube H, Dolan RJ, Frith CD (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303:1157–1162PubMedCrossRefGoogle Scholar
  86. Suhara T, Okubo Y, Yasuno F, Sudo Y, Inoue M, Ichimiya T, Nakashima Y, Nakayama K, Tanada S, Suzuki K, Halldin C, Farde L (2002) Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch Gen Psychiatry 59:25–30PubMedCrossRefGoogle Scholar
  87. Sutoo D, Akiyama K, Takita H (1995) Hypertension in epileptic mice—a phenomenon related to reduction of Ca2+-dependent catecholamine synthesis in the brain. Eur J Pharmacol 278:33–37PubMedCrossRefGoogle Scholar
  88. Thompson MR, Callaghan PD, Hunt GE, Cornish JL, McGregor IS (2007) A role for oxytocin and 5-HT(1A) receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine (“ecstasy”). Neuroscience 146:509–514PubMedCrossRefGoogle Scholar
  89. Tullett AM, Harmon-Jones E, Inzlicht M (2012) Right frontal cortical asymmetry predicts empathic reactions: support for a link between withdrawal motivation and empathy. Psychophysiology 49:1145–1153PubMedGoogle Scholar
  90. Veenstra-VanderWeele J, Muller CL, Iwamoto H, Sauer JE, Owens WA, Shah CR, Cohen J, Mannangatti P, Jessen T, Thompson BJ, Ye R, Kerr TM, Carneiro AM, Crawley JN, Sanders-Bush E, McMahon DG, Ramamoorthy S, Daws LC, Sutcliffe JS, Blakely RD (2012) Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proc Natl Acad Sci U S A 109:5469–5474PubMedCrossRefPubMedCentralGoogle Scholar
  91. Williams D, Tijssen M, van Bruggen G, Bosch A, Insola A, Di Lazzaro V, Mazzone P, Oliviero A, Quartarone A, Speelman H, Brown P (2002a) Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 125:1558–1569PubMedCrossRefGoogle Scholar
  92. Williams GV, Rao SG, Goldman-Rakic PS (2002b) The physiological role of 5-HT2A receptors in working memory. J Neurosci 22:2843–2854PubMedGoogle Scholar
  93. Wohr M, Scattoni ML (2013) Behavioural methods used in rodent models of autism spectrum disorders: current standards and new developments. Behav Brain Res 251:5–17PubMedCrossRefGoogle Scholar
  94. Wu LJ, Li XY, Chen T, Ren M, Zhuo M (2009) Characterization of intracortical synaptic connections in the mouse anterior cingulate cortex using dual patch clamp recording. Mol Brain 2Google Scholar
  95. Young SN, Leyton M (2002) The role of serotonin in human mood and social interaction. Insight from altered tryptophan levels. Pharmacol Biochem Behav 71:857–865PubMedCrossRefGoogle Scholar
  96. Zangen A, Nakash R, Overstreet DH, Yadid G (2001) Association between depressive behavior and absence of serotonin–dopamine interaction in the nucleus accumbens. Psychopharmacology 155:434–439PubMedCrossRefGoogle Scholar
  97. Zendehdel M, Hamidi F, Babapour V, Mokhtarpouriani K, Fard RMN (2012) The effect of melanocortin (Mc3 and Mc4) antagonists on serotonin-induced food and water intake of broiler cockerels. J Vet Sci 13:229PubMedCrossRefPubMedCentralGoogle Scholar
  98. Zheng C, Quan M, Zhang T (2012) Decreased thalamo-cortical connectivity by alteration of neural information flow in theta oscillation in depression-model rats. J Comput Neurosci 33:547–558PubMedCrossRefGoogle Scholar
  99. Zhou FM, Hablitz JJ (1999) Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex. J Neurophysiol 82:2989–2999PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Byung Sun Kim
    • 1
  • Junghee Lee
    • 1
  • Minji Bang
    • 1
  • Bo Am Seo
    • 1
  • Arshi Khalid
    • 1
  • Min Whan Jung
    • 2
  • Daejong Jeon
    • 1
  1. 1.Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  2. 2.Center for Synaptic Brain Dysfunctions, Institute for Basic Science and Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations