, Volume 231, Issue 9, pp 2043–2044 | Cite as

Reply to: Rapid antidepressant effects and abuse liability of ketamine

  • Todd M. Hillhouse
  • Joseph H. Porter
  • S. Stevens NegusEmail author
Letter to Editor


Ketamine NMDA Receptor Antagonist Tail Suspension Test Sigma Receptor Healthy Human Volunteer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by NIH grant R01 NS070715.

Conflict of interest

None declared.


  1. Hillhouse T, Porter J, Negus SS (2014) Dissociable effects of the noncompetitive NMDA receptor antagonists ketamine and MK-801 on intracranial self-stimulation in rats. Psychopharmacology (Berlin). doi: 10.1007/s00213-014-3451-3 Google Scholar
  2. Hustveit O, Maurset A, Øye I (1995) Interaction of the chiral forms of ketamine with opioid, phencyclidine, σ and muscarinic receptors. Pharmacol Toxicol 77:355–359PubMedCrossRefGoogle Scholar
  3. McCambridge J, Winstock A, Hunt N, Mitcheson L (2007) 5-Year trends in use of hallucinogens and other adjunct drugs among UK dance drug users. Eur Addict Res 13:57–64PubMedCrossRefGoogle Scholar
  4. Oye I, Paulsen O, Maurset A (1992) Effects of ketamine on sensory perception: evidence for a role of N-methyl-d-aspartate receptors. J Pharmacol Exp Ther 260:1209–1213PubMedGoogle Scholar
  5. Rocha BA, Ward AS, Egilmez Y, Lytle DA, Emmett-Oglesby MW (1996) Tolerance to the discriminative stimulus and reinforcing effects of ketamine. Behav Pharmacol 7:160–168PubMedGoogle Scholar
  6. Shek DTL (2007) Tackling adolescent substance abuse in Hong Kong: where we should and should not go. Sci World J 7:2021–2030CrossRefGoogle Scholar
  7. Suzuki T, Kato H, Aoki T, Tsuda M, Narita M, Misawa M (2000) Effects of the non-competitive NMDA receptor antagonist ketamine on morphine-induced place preference in mice. Life Sci 67:383–389PubMedCrossRefGoogle Scholar
  8. Vollenweider FX, Leenders KL, Øye I, Hell D, Angst J (1997) Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol 7:25–38PubMedCrossRefGoogle Scholar
  9. Zeilhofer HU, Swandulla D, Geisslinger G, Brune K (1992) Differential effects of ketamine enantiomers on NMDA receptor currents in cultured neurons. Eur J Pharmacol 213:155–158PubMedCrossRefGoogle Scholar
  10. Zhang J-C, Li S-X, Hashimoto K (2014) R (−)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine. Pharmacol Biochem Behav 116:137–141PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Todd M. Hillhouse
    • 1
  • Joseph H. Porter
    • 1
  • S. Stevens Negus
    • 2
    Email author
  1. 1.Department of PsychologyVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations