, Volume 231, Issue 14, pp 2825–2837 | Cite as

Marine polyphenol phlorotannins promote non-rapid eye movement sleep in mice via the benzodiazepine site of the GABAA receptor

  • Suengmok Cho
  • Minseok Yoon
  • Ae Nim Pae
  • Young-Ho Jin
  • Nam-Chul Cho
  • Yohko Takata
  • Yoshihiro Urade
  • Sojin Kim
  • Jin-Soo Kim
  • Hyejin Yang
  • Jiyoung Kim
  • Jinkyoung Kim
  • Jin-Kyu Han
  • Makoto ShimizuEmail author
  • Zhi-Li HuangEmail author
Original Investigation



In psychopharmacology, researchers have been interested in the hypnotic effects of terrestrial plant polyphenols and their synthetic derivatives. Phlorotannins, a marine plant polyphenol, could have potential as a source of novel hypnotic drugs.


The effects of phlorotannins and major phlorotannin constituent eckstolonol on sleep–wake profiles in mice were evaluated in comparison with diazepam, and their hypnotic mechanism was also investigated.


The effects of phlorotannin preparation (PRT) and eckstolonol orally given on sleep–wake profiles were measured by recording electroencephalograms (EEG) and electromyograms in C57BL/6N mice. Flumazenil, a GABAA-benzodiazepine (BZD) receptor antagonist, was injected 15 min before PRT and eckstolonol to reveal its hypnotic mechanism.


PRT administration (>250 mg/kg) produced a significant decrease in sleep latency and an increase in the amount of non-rapid eye movement sleep (NREMS). Eckstolonol significantly decreased sleep latency (>12.5 mg/kg) and increased the amount of NREMS (50 mg/kg). PRT and eckstolonol had no effect on EEG power density of NREMS. The hypnotic effects of PRT or eckstolonol were completely abolished by pretreatment with flumazenil.


We demonstrated that phlorotannins promote NREMS by modulating the BZD site of the GABAA receptor. These results suggest that phlorotannins can be potentially used as an herbal medicine for insomnia and as a promising structure for developing novel sedative–hypnotics.


GABAA-benzodiazepine receptor Hypnotic Marine polyphenols Phlorotannins Sleep promoting 



This study was supported by grants from the Korea Food Research Institute (E0131402), Small and Medium Business Administration (G01981), the National Basic Research Program of China (2011CB711000, 2009ZX09303-006), the National Natural Science Foundation of China (31171010, 31121061, 31271164), the Shanghai Committee of Science and Technology (13140903100, 13dz2260700), and the Shanghai Leading Academic Discipline Project (B119).

Conflict of interest

All authors declare no conflicts of interest and had no disclosures.


  1. Alexandre C, Dordal A, Aixendri R, Guzman A, Hamon M, Adrien J (2008) Sleep-stabilizing effects of E-6199, compared to zopiclone, zolpidem and THIP in mice. Sleep 31:259–270PubMedCentralPubMedGoogle Scholar
  2. Anaclet C, Zhang M, Zhao C, Buda C, Seugnet L, Lin JS (2012) Effects of GF-015535-00, a novel α1 GABAA receptor ligand, on the sleep-wake cycle in mice, with reference to zolpidem. Sleep 35:103–111PubMedCentralPubMedGoogle Scholar
  3. Atack JR, Smith AJ, Emms F, McKernan RM (1999) Regional differences in the inhibition of mouse in vivo [3H]Ro 15-1788 binding reflect selectivity for α1 versus α2 and α3 subunit-containing GABAA receptors. Neuropsychopharmacology 20:255–262PubMedCrossRefGoogle Scholar
  4. Barnum D, Greene J, Smellie A, Sprague P (1996) Identification of common functional configurations among molecules. J Chem Inf Comput Sci 36:563–571PubMedCrossRefGoogle Scholar
  5. Bastien CH, LeBlanc M, Carrier J, Morin CM (2003) Sleep EEG power spectra, insomnia, and chronic use of benzodiazepines. Sleep 26:313–317PubMedGoogle Scholar
  6. Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Shiromani AM, Salin-Pascual RJ, Hof PR, Shiromani PJ (2006) Adenosine and sleep homeostasis in the basal forebrain. J Neurosci 26:8092–8100PubMedCrossRefGoogle Scholar
  7. Bouayed J, Rammal H, Dicko A, Younos C, Soulimani R (2007) Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J Neurol Sci 262:77–84PubMedCrossRefGoogle Scholar
  8. Chen CR, Zhou XZ, Luo YJ, Huang ZL, Urade Y, Qu WM (2012) Magnolol, a major bioactive constituent of the bark of Magnolia officinalis, induces sleep via the benzodiazepine site of GABAA receptor in mice. Neuropharmacology 63:1191–1199PubMedCrossRefGoogle Scholar
  9. Cho S, Yang H, Jeon YJ, Lee CJ, Jin YH, Back NI, Kim DS, Kang SM, Yoon M, Yong H, Shimizu M, Han D (2012) Phlorotannins of the edible brown seaweed Ecklonia cava Kjellman induce sleep via positive allosteric modulation of gamma-aminobutyric acid type A-benzodiazepine receptor: a novel neurological activity of seaweed polyphenols. Food Chem 132:1133–1142CrossRefGoogle Scholar
  10. Erman MK (2005) Therapeutic options in the treatment of insomnia. J Clin Psychiatry 66:18–23PubMedGoogle Scholar
  11. Goutman JD, Waxemberg MD, Doñate-Oliver F, Pomata PE, Calvo DJ (2003) Flavonoid modulation of ionic currents mediated by GABAA and GABAC receptors. Eur J Pharmacol 461:79–87PubMedCrossRefGoogle Scholar
  12. Greene J, Kahn S, Savoj H, Sprague P, Teig S (1994) Chemical function queries for 3D database search. J Chem Inf Com Sci 34:1297–1308CrossRefGoogle Scholar
  13. Hambrecht-Wiedbusch VS, Gauthier EA, Baghdoyan HA, Lydic R (2010) Benzodiazepine receptor agonists cause drug-specific and state-specific alterations in EEG power and acetylcholine release in rat pontine reticular formation. Sleep 33:909–918PubMedCentralPubMedGoogle Scholar
  14. Huen MS, Leung JW, Ng W, Lui WS, Chan MN, Wong JT, Xue H (2003) 5,7-Dihydroxy-6-methoxyflavone, a benzodiazepine site ligand isolated from Scutellaria baicalensis Georgi, with selective antagonistic properties. Biochem Pharmacol 66:125–132PubMedCrossRefGoogle Scholar
  15. Ioannou E, Roussis V (2009) Natural products from seaweeds. In: Osbourn AE, Lanzotti V (eds) Plant-derived natural products. Springer, New York, pp 51–81CrossRefGoogle Scholar
  16. Ishida T, Obara Y, Kamei C (2009) Effects of some antipsychotics and a benzodiazepine hypnotic on the sleep-wake pattern in an animal model of schizophrenia. J Pharmacol Sci 111:44–52PubMedCrossRefGoogle Scholar
  17. Jäger AK, Saaby L (2011) Flavonoids and the CNS. Molecules 16:1471–1485PubMedCrossRefGoogle Scholar
  18. Jin YH, Cahill EA, Fernandes LG, Wang X, Chen W, Smith SM, Andresen MC (2010) Optical tracking of phenotypically diverse individual synapses on solitary tract nucleus neurons. Brain Res 1312:54–66PubMedCrossRefGoogle Scholar
  19. Jin Z, Kim S, Cho S, Kim IH, Han D, Jin YH (2013) Potentiating effect of glabridin on GABAA receptor-mediated responses in dorsal raphe neurons. Planta Med 79:1408–1412PubMedCrossRefGoogle Scholar
  20. Johnston GA (2005) GABAA receptor channel pharmacology. Curr Pharm Des 11:1867–1885PubMedCrossRefGoogle Scholar
  21. Kahnberg P, Lager E, Rosenberg C, Schougaard J, Camet L, Sterner O, Østergaard Nielsen E, Nielsen M, Liljefors T (2002) Refinement and evaluation of a pharmacophore model for flavone derivatives binding to the benzodiazepine site of the GABAA receptor. J Med Chem 45:4188–4201PubMedCrossRefGoogle Scholar
  22. Kemp JA, Marshall GR, Wong EH, Woodruff GN (1987) The affinities, potencies and efficacies of some benzodiazepine-receptor agonists, antagonists and inverse-agonists at rat hippocampal GABAA-receptors. Br J Pharmacol 91:601–608PubMedCentralPubMedCrossRefGoogle Scholar
  23. Koivikko R, Loponen J, Pihlaja K, Jormalainen V (2007) High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochem Anal 18:326–332PubMedCrossRefGoogle Scholar
  24. Korpi ER, Mattila MJ, Wisden W, Lüddens H (1997) GABAA-receptor subtypes: clinical efficacy and selectivity of benzodiazepine site ligands. Ann Med 29:275–282PubMedCrossRefGoogle Scholar
  25. Kim AR, Shin TS, Lee MS, Park JY, Park KE, Yoon NY, Kim JS, Choi JS, Jang BC, Byun DS, Park NK, Kim HR (2009) Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and anti-inflammatory properties. J Agric Food Chem 57:3483–3489PubMedCrossRefGoogle Scholar
  26. Kopp C, Rudolph U, Keist R, Tobler I (2003) Diazepam-induced changes on sleep and the EEG spectrum in mice: role of the α3-GABAA receptor subtype. Eur J Neurosci 17:2226–2230PubMedCrossRefGoogle Scholar
  27. Kopp C, Rudolph U, Low K, Tobler I (2004) Modulation of rhythmic brain activity by diazepam: GABAA receptor subtype and state specificity. Proc Natl Acad Sci U S A 101:3674–3679PubMedCentralPubMedCrossRefGoogle Scholar
  28. Marder M, Viola H, Wasowski C, Wolfman C, Waterman PG, Cassels BK, Medina JG, Paladini AC (1996) 6-Bromoflavone, a high affinity ligand for the central benzodiazepine receptors is a member of a family of active flavonoids. Biochem Biophys Res Comm 223:384–389PubMedCrossRefGoogle Scholar
  29. Marder M, Zinczuk J, Colombo MI, Wasowski C, Viola H, Wolfman C, Medina JH, Rúveda EA, Paladini AC (1997) Synthesis of halogenated/nitrated flavone derivatives and evaluation of their affinity for the central benzodiazepine receptor. Bioorg Med Chem Lett 7:2003–2008CrossRefGoogle Scholar
  30. Martínez JHI, Castañeda HGT (2013) Preparation and chromatographic analysis of phlorotannins. J Chromatogr Sci 51:825–838PubMedCrossRefGoogle Scholar
  31. Masaki M, Aritake K, Tanaka H, Shoyama Y, Huang ZL, Urade Y (2012) Crocin promotes non-rapid eye movement sleep in mice. Mol Nutr Food Res 56:304–308PubMedCrossRefGoogle Scholar
  32. Meletis CD, Zabriskie N (2008) Natural approaches for optimal sleep. Altern Complement Ther 14:181–188CrossRefGoogle Scholar
  33. Meolie AL, Rosen C, Kristo D, Kohrman M, Gooneratne N, Aguillard RN, Fayle R, Troell R, Townsend D, Claman D, Hoban T, Mahowald M (2005) Oral nonprescription treatment for insomnia: an evaluation of products with limited evidence. J Clin Sleep Med 1:173–187PubMedGoogle Scholar
  34. Murase K, Ryu PD, Randic M (1989) Excitatory and inhibitory amino acids and peptide-induced responses in acutely isolated rat spinal dorsal horn neurons. Neurosci Lett 103:56–63PubMedCrossRefGoogle Scholar
  35. Myung CS, Shin HC, Bao HY, Yeo SJ, Lee BH, Kang JS (2005) Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: possible involvement of the inhibition of acetylcholinesterase. Arch Pharm Res 28:691–698PubMedCrossRefGoogle Scholar
  36. Nazar M, Jessa M, Plaznik A (1997) Benzodiazepine-GABAA receptor complex ligands in two models of anxiety. J Neural Transm 104:733–746PubMedCrossRefGoogle Scholar
  37. Omori K, Kagami Y, Yokoyama C, Moriyama T, Matsumoto N, Masaki M, Nakamura H, Kamasaka H, Shiraishi K, Kometani T, Kuriki T, Huang ZL, Urade Y (2012) Promotion of non-rapid eye movement sleep in mice after oral administration of ornithine. Sleep Biol Rhythms 10:38–45CrossRefGoogle Scholar
  38. Ovaskainen ML, Törrönen R, Koponen JM, Sinkko H, Hellström J, Reinivuo H, Mattila P (2008) Dietary intake and major food sources of polyphenols in Finnish adults. J Nutr 138:562–566PubMedGoogle Scholar
  39. Pérez-Jiménez J, Hubert J, Hooper L, Cassidy A, Manach C, Williamson G, Scalbert A (2010) Urinary metabolites as biomarkers of polyphenol intake in humans: a systematic review. Am J Clin Nutr 92:801–809PubMedCrossRefGoogle Scholar
  40. Qu WM, Yue XF, Sun Y, Fan K, Chen CR, Hou YP, Urade Y, Huang ZL (2012) Honokiol promotes non-rapid eye movement sleep via the benzodiazepine site of the GABAA receptor in mice. Br J Pharmacol 167:587–598PubMedCentralPubMedCrossRefGoogle Scholar
  41. Shibata T, Kawaguchi S, Hama Y, Inagaki M, Yamaguchi K, Nakamura T (2004) Local and chemical distribution of phlorotannins in brown algae. J Appl Phycol 16:291–296CrossRefGoogle Scholar
  42. Shim SY, Quang-To L, Lee SH, Kim SK (2009) Ecklonia cava extract suppresses the high-affinity IgE receptor FcεRI expression. Food Chem Toxicol 47:555–560PubMedCrossRefGoogle Scholar
  43. Shinomiya K, Inoue T, Utsu Y, Tokunaga S, Masuoka T, Ohmori A, Kamei C (2005) Effects of kava-kava extract on the sleep-wake cycle in sleep-disturbed rats. Psychopharmacology 180:564–569PubMedCrossRefGoogle Scholar
  44. Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16:245–262CrossRefGoogle Scholar
  45. Sprenger KJ, Aneiro L, Fung L, Liu Y, Changchit A, Rajachandran L, Kehne JH, Xie L (2007) III Clinical trial data demonstrating sedative-hypnotic efficacy of the α3-subunit preferring GABAA receptor partial allosteric activator, NG2–73: translational validity of pharmacokinetic/pharmacodynamic (PK/PD) relationships derived from preclinical studies. Program no. AAA17. Neuroscience Meeting Planner. Society for Neuroscience Online, San Diego.Google Scholar
  46. Stephenson FA (1995) The GABAA receptors. Biochem J 310:1–9PubMedCentralPubMedGoogle Scholar
  47. Stewart SA (2005) The effects of benzodiazepines on cognition. J Clin Psychiatry 66:9–13PubMedCrossRefGoogle Scholar
  48. Tokunaga S, Takeda Y, Niimoto T, Nishida N, Kubo T, Ohno T, Matsuura Y, Kawahara Y, Shinomiya K, Kamei C (2007) Effect of valerian extract preparation (BIM) on the sleep-wake cycle in rats. Biol Pharm Bull 30:363–366PubMedCrossRefGoogle Scholar
  49. Trevor AJ, Way WL, Katzung BG (2007) Sedative-hypnotic drugs. McGraw-Hill Medical, New YorkGoogle Scholar
  50. Vanini G, Lydic R, Baghdoyan HA (2012) GABA-to-ACh ratio in basal forebrain and cerebral cortex varies significantly during sleep. Sleep 35:1325–1334PubMedCentralPubMedGoogle Scholar
  51. Vignes M, Maurice T, Lanté F, Nedjar M, Thethi K, Guiramand J, Récasens M (2006) Anxiolytic properties of green tea polyphenol (−)-epigallocatechin gallate (EGCG). Brain Res 1110:102–115PubMedCrossRefGoogle Scholar
  52. Walsh JK, Thacker S, Knowles LJ, Tasker T, Hunneyball IM (2009) The partial positive allosteric GABAA receptor modulator EVT 201 is efficacious and safe in the treatment of adult primary insomnia patients. Sleep Med 10:859–864PubMedCrossRefGoogle Scholar
  53. Wolfman C, Viola H, Marder M, Ardenghi P, Wasowski C, Schroder N, Izquierdo I, Ruveda E, Paladini A, Medina JH (1998) Pharmacological characterization of 6-bromo-3′-nitroflavone, a synthetic flavonoid with high affinity for the benzodiazepine receptors. Pharmacol Biochem Behav 61:239–246PubMedCrossRefGoogle Scholar
  54. Xiang YZ, Shang HC, Gao XM, Zhang BL (2008) A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res 22:851–858PubMedCrossRefGoogle Scholar
  55. Yang S-Y (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15:444–450PubMedCrossRefGoogle Scholar
  56. Yoon NY, Chung HY, Kim HR, Choi JS (2008) Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish Sci 74:200–207CrossRefGoogle Scholar
  57. Zhang W, Koehler KF, Zhang P, Cook JM (1995) Development of a comprehensive pharmacophore model for the benzodiazepine receptor. Drug Des Discov 12:193–248PubMedGoogle Scholar
  58. Zou Y, Qian ZJ, Li Y, Kim MM, Lee SH, Kim SK (2008) Antioxidant effects of phlorotannins isolated from Ishige okamurae in free radical mediated oxidative systems. J Agric Food Chem 56:7001–7009PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Suengmok Cho
    • 1
  • Minseok Yoon
    • 1
    • 2
  • Ae Nim Pae
    • 3
  • Young-Ho Jin
    • 5
  • Nam-Chul Cho
    • 3
  • Yohko Takata
    • 4
  • Yoshihiro Urade
    • 4
  • Sojin Kim
    • 5
  • Jin-Soo Kim
    • 2
  • Hyejin Yang
    • 1
  • Jiyoung Kim
    • 1
  • Jinkyoung Kim
    • 6
  • Jin-Kyu Han
    • 7
  • Makoto Shimizu
    • 8
    Email author
  • Zhi-Li Huang
    • 9
    Email author
  1. 1.Korea Food Research InstituteSungnamRepublic of Korea
  2. 2.Department of Seafood Science and Technology, Institute of Marine IndustryGyeongsang National UniversityTongyeongRepublic of Korea
  3. 3.Center for Neuro-MedicineKorea Institute of Science and TechnologySeoulRepublic of Korea
  4. 4.International Institute for Integrative Sleep MedicineUniversity of TsukubaTsukubaJapan
  5. 5.Department of Physiology, School of MedicineKyung Hee UniversitySeoulRepublic of Korea
  6. 6.KGC LifenginSeoulRepublic of Korea
  7. 7.Seoul Sleep CenterSeoulRepublic of Korea
  8. 8.Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  9. 9.State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences, Department of Pharmacology, Shanghai Medical CollegeFudan UniversityShanghaiChina

Personalised recommendations