Psychopharmacology

, Volume 231, Issue 7, pp 1397–1407 | Cite as

Neural responses to subliminally presented cannabis and other emotionally evocative cues in cannabis-dependent individuals

  • Reagan R. Wetherill
  • Anna Rose Childress
  • Kanchana Jagannathan
  • Julian Bender
  • Kimberly A. Young
  • Jesse J. Suh
  • Charles P. O’Brien
  • Teresa R. Franklin
Original Investigation

Abstract

Rationale

Addiction theories posit that drug-related cues maintain and contribute to drug use and relapse. Indeed, our recent study in cocaine-dependent patients demonstrated that subliminally presented cocaine-related stimuli activate reward neurocircuitry without being consciously perceived. Activation of reward neurocircuitry may provoke craving and perhaps prime an individual for subsequent drug-seeking behaviors.

Objectives

Using an equivalent paradigm, we tested whether cannabis cues activate reward neurocircuitry in treatment-seeking, cannabis-dependent individuals and whether activation was associated with relevant behavioral anchors: baseline cannabis craving (drug-seeking behavior) and duration of use (degree of conditioning).

Methods

Twenty treatment-seeking, cannabis-dependent individuals (12 males) underwent event-related blood oxygen level-dependent functional magnetic resonance imaging during exposure to 33-ms cannabis, sexual, and aversive cues presented in a backward-masking paradigm. Drug use history and cannabis craving were assessed prior to imaging.

Results

Participants showed increased activity to backward-masked cannabis cues in regions supporting reward detection and interoception, including the left anterior insula, left ventral striatum/amygdala, and right ventral striatum. Cannabis cue-related activity in the bilateral insula and perigenual anterior cingulate cortex was positively associated with baseline cannabis craving, and cannabis cue-related activity in the medial orbitofrontal cortex was positively correlated with years of cannabis use. Neural responses to backward-masked sexual cues were similar to those observed during cannabis cue exposure, while activation to aversive cues was observed only in the left anterior insula and perigenual anterior cingulate cortex.

Conclusions

These data highlight the sensitivity of the brain to subliminal reward signals and support hypotheses promoting a common pathway of appetitive motivation.

Keywords

Addiction Cannabis cues Neuroimaging Cannabis craving Subliminal Marijuana cues Marijuana craving Reward 

Supplementary material

213_2013_3342_MOESM1_ESM.doc (62 kb)
Online Resource 1(DOC 62 kb)
213_2013_3342_MOESM2_ESM.doc (56 kb)
Online Resource 2(DOC 56 kb)

References

  1. Addolorato G, Leggio L, Ferrulli A, Cardone S, Bedogni G, Caputo F et al (2011) Dose–response effect of baclofen in reducing daily alcohol intake in alcohol dependence: secondary analysis of a randomized, double-blind, placebo-controlled trial. Alcohol Alcohol 46:312–317PubMedCrossRefGoogle Scholar
  2. American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV). American Psychiatric Association, Washington, DCGoogle Scholar
  3. Asensio S, Romero MJ, Romero FJ, Wong C, Alia-Klein N, Tomasi D et al (2010) Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later. Synapse 64:397–402PubMedCentralPubMedCrossRefGoogle Scholar
  4. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369PubMedCrossRefGoogle Scholar
  5. Berridge KC, Winkielman P (2003) What is an unconscious emotion? (the case for unconscious “liking”). Cogn Emot 17:181–211CrossRefGoogle Scholar
  6. Bonson KR, Grant SJ, Contoreggi CS, Links JM, Metcalfe J, Weyl HL et al (2002) Neural systems and cue-induced cocaine craving. Neuropsychopharmacology 26:376–386PubMedCrossRefGoogle Scholar
  7. Brebner K, Childress AR, Roberts DC (2002) A potential role for GABA(B) agonists in the treatment of psychostimulant addiction. Alcohol Alcohol 37:478–484PubMedCrossRefGoogle Scholar
  8. Brooks SJ, Savov V, Allzen E, Benedict C, Fredriksson R, Schioth HB (2012) Exposure to subliminal arousing stimuli induces robust activation in the amygdala, hippocampus, anterior cingulate, insular cortex and primary visual cortex: a systematic meta-analysis of fMRI studies. Neuroimage 59:2962–2973PubMedCrossRefGoogle Scholar
  9. Budney AJ, Vandrey RG, Hughes JR, Thostenson JD, Bursac Z (2008) Comparison of cannabis and tobacco withdrawal: severity and contribution to relapse. J Subst Abuse Treat 35:362–368PubMedCrossRefGoogle Scholar
  10. Cabeza de Vaca S, Carr KD (1998) Food restriction enhances the central rewarding effect of abused drugs. J Neurosci 18:7502–7510PubMedGoogle Scholar
  11. Caggiula AR, Donny EC, White AR, Chaudhri N, Booth S, Gharib MA et al (2001) Cue dependency of nicotine self-administration and smoking. Pharmacol Biochem Behav 70:515–530PubMedCrossRefGoogle Scholar
  12. Carlsson K, Petersson KM, Lundqvist D, Karlsson A, Ingvar M, Ohman A (2004) Fear and the amygdala: manipulation of awareness generates differential cerebral responses to phobic and fear-relevant (but nonfeared) stimuli. Emotion 4:340–353PubMedCrossRefGoogle Scholar
  13. Carroll KM (1998) A cognitive-behavioral approach: treating cocaine addiction (NIH publication 98–4308). National Institute on Drug Abuse, Rockville, MDGoogle Scholar
  14. Chase HW, Eickhoff SB, Laird AR, Hogarth L (2011) The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol Psychiatry 70:785–793PubMedCrossRefGoogle Scholar
  15. Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O'Brien CP (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatry 156:11–18PubMedCentralPubMedGoogle Scholar
  16. Childress AR, Ehrman RN, Wang Z, Li Y, Sciortino N, Hakun J et al (2008) Prelude to passion: limbic activation by “unseen” drug and sexual cues. PLoS One 3:e1506PubMedCentralPubMedCrossRefGoogle Scholar
  17. Cousijn J, Goudriaan AE, Ridderinkhof KR, van den Brink W, Veltman DJ, Wiers RW (2012) Neural responses associated with cue-reactivity in frequent cannabis users. Addict Biol 18:570–580PubMedCrossRefGoogle Scholar
  18. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comp Biomed Res 29:162–173CrossRefGoogle Scholar
  19. Craig AD (2009) How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70PubMedCrossRefGoogle Scholar
  20. Craig AD (2011) Significance of the insula for the evolution of human awareness of feelings from the body. Ann N Y Acad Sci 1225:72–82PubMedCrossRefGoogle Scholar
  21. Crane NA, Schuster RM, Fusar-Poli P, Gonzalez R (2012) Effects of cannabis on neurocognitive functioning: recent advances, neurodevelopmental influences, and sex differences. Neuropsychol Rev 23:117–137PubMedCrossRefGoogle Scholar
  22. Diekhof EK, Kaps L, Falkai P, Gruber O (2012) The role of the human ventral striatum and the medial orbitofrontal cortex in the representation of reward magnitude—an activation likelihood estimation meta-analysis of neuroimaging studies of passive reward expectancy and outcome processing. Neuropsychologia 50:1252–1266PubMedCrossRefGoogle Scholar
  23. Dutra L, Stathopoulou G, Basden SL, Leyro TM, Powers MB, Otto MW (2008) A meta-analytic review of psychosocial interventions for substance use disorders. Am J Psychiatry 165:179–187PubMedCrossRefGoogle Scholar
  24. Elliott R, Dolan RJ, Frith CD (2000) Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex 10:308–317PubMedCrossRefGoogle Scholar
  25. Fattore L, Spano MS, Cossu G, Scherma M, Fratta W, Fadda P (2009) Baclofen prevents drug-induced reinstatement of extinguished nicotine-seeking behaviour and nicotine place preference in rodents. Eur Neuropsychopharmacol 19:487–498PubMedCrossRefGoogle Scholar
  26. Filbey FM, Schacht JP, Myers US, Chavez RS, Hutchison KE (2009) Marijuana craving in the brain. Proc Natl Acad Sci U S A 106:13016–13021PubMedCentralPubMedCrossRefGoogle Scholar
  27. Franklin TR, Wang Z, Wang J, Sciortino N, Harper D, Li Y et al (2007) Limbic activation to cigarette smoking cues independent of nicotine withdrawal: a perfusion fMRI study. Neuropsychopharmacology 32:2301–2309PubMedCrossRefGoogle Scholar
  28. Franklin TR, Harper D, Kampman K, Kildea-McCrea S, Jens W, Lynch KG et al (2009a) The GABA B agonist baclofen reduces cigarette consumption in a preliminary double-blind placebo-controlled smoking reduction study. Drug Alcohol Depend 103:30–36PubMedCentralPubMedCrossRefGoogle Scholar
  29. Franklin TR, Lohoff FW, Wang Z, Sciortino N, Harper D, Li Y et al (2009b) DAT genotype modulates brain and behavioral responses elicited by cigarette cues. Neuropsychopharmacology 34:717–728PubMedCentralPubMedCrossRefGoogle Scholar
  30. Franklin TR, Wang Z, Sciortino N, Harper D, Li Y, Hakun J et al (2011) Modulation of resting brain cerebral blood flow by the GABA B agonist, baclofen: a longitudinal perfusion fMRI study. Drug Alcohol Depend 117:176–183PubMedCentralPubMedCrossRefGoogle Scholar
  31. Franklin TR, Shin J, Jagannathan K, Suh JJ, Detre JA, O'Brien CP et al (2012) Acute baclofen diminishes resting baseline blood flow to limbic structures: a perfusion fMRI study. Drug Alcohol Depend 125:60–66PubMedCentralPubMedCrossRefGoogle Scholar
  32. Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R (1998) Event-related fMRI: characterizing differential responses. Neuroimage 7:30–40PubMedCrossRefGoogle Scholar
  33. George MS, Anton RF, Bloomer C, Teneback C, Drobes DJ, Lorberbaum JP et al (2001) Activation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol-specific cues. Arch Gen Psychiatry 58:345–352PubMedCrossRefGoogle Scholar
  34. Goldman M, Szucs-Reed RP, Jagannathan K, Ehrman RN, Wang Z, Li Y et al (2012) Reward-related brain response and craving correlates of marijuana cue exposure: a preliminary study in treatment-seeking marijuana-dependent subjects. J Addict Med 7:8–16CrossRefGoogle Scholar
  35. Goldstein RZ, Woicik PA, Moeller SJ, Telang F, Jayne M, Wong C et al (2010) Liking and wanting of drug and non-drug rewards in active cocaine users: the STRAP-R questionnaire. J Psychopharmacol 24:257–266PubMedCentralPubMedCrossRefGoogle Scholar
  36. Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C et al (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci U S A 93:12040–12045PubMedCentralPubMedCrossRefGoogle Scholar
  37. Grigson PS, Twining RC (2002) Cocaine-induced suppression of saccharin intake: a model of drug-induced devaluation of natural rewards. Behav Neurosci 116:321–333PubMedCrossRefGoogle Scholar
  38. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO (1991) The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict 86:1119–1127PubMedCrossRefGoogle Scholar
  39. Heishman SJ, Evans RJ, Singleton EG, Levin KH, Copersino ML, Gorelick DA (2009) Reliability and validity of a short form of the Marijuana Craving Questionnaire. Drug Alcohol Depend 102:35–40PubMedCentralPubMedCrossRefGoogle Scholar
  40. Isomura Y, Takada M (2004) Neural mechanisms of versatile functions in primate anterior cingulate cortex. Rev Neurosci 15:279–291PubMedCrossRefGoogle Scholar
  41. Jacobus J, Goldenberg D, Wierenga CE, Tolentino NJ, Liu TT, Tapert SF (2012) Altered cerebral blood flow and neurocognitive correlates in adolescent cannabis users. Psychopharmacology (Berl) 222:675–684CrossRefGoogle Scholar
  42. Klucken T, Schweckendiek J, Merz CJ, Tabbert K, Walter B, Kagerer S et al (2009) Neural activations of the acquisition of conditioned sexual arousal: effects of contingency awareness and sex. J Sex Med 6:3071–3085PubMedCrossRefGoogle Scholar
  43. Klucken T, Schweckendiek J, Koppe G, Merz CJ, Kagerer S, Walter B et al (2012) Neural correlates of disgust- and fear-conditioned responses. Neuroscience 201:209–218PubMedCrossRefGoogle Scholar
  44. Klucken T, Alexander N, Schweckendiek J, Merz CJ, Kagerer S, Osinsky R et al (2013) Individual differences in neural correlates of fear conditioning as a function of 5-HTTLPR and stressful life events. Soc Cogn Affect Neurosci 8:318–325PubMedCentralPubMedCrossRefGoogle Scholar
  45. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238PubMedCentralPubMedCrossRefGoogle Scholar
  46. Kuhn S, Gallinat J (2011a) Common biology of craving across legal and illegal drugs—a quantitative meta-analysis of cue-reactivity brain response. Eur J Neurosci 33:1318–1326PubMedCrossRefGoogle Scholar
  47. Kuhn S, Gallinat J (2011b) A quantitative meta-analysis on cue-induced male sexual arousal. J Sex Med 8:2269–2275PubMedCrossRefGoogle Scholar
  48. Lang P, Bradley M, Cuthbert B (2008) International affective picture system (IAPS): affective ratings of pictures and instruction manual. Technical report A-8. University of Florida, Gainesville, FLGoogle Scholar
  49. Lundahl LH, Johanson CE (2011) Cue-induced craving for marijuana in cannabis-dependent adults. Exp Clin Psychopharmacol 19:224–230PubMedCrossRefGoogle Scholar
  50. Martens MJ, Born JM, Lemmens SG, Karhunen L, Heinecke A, Goebel R et al (2013) Increased sensitivity to food cues in the fasted state and decreased inhibitory control in the satiated state in the overweight. Am J Clin Nutr 97:471–479PubMedCrossRefGoogle Scholar
  51. McLellan AT, Kushner H, Metzger D, Peters R, Smith I, Grissom G et al (1992) The fifth edition of the Addiction Severity Index. J Subst Abuse Treat 9:199–213PubMedCrossRefGoogle Scholar
  52. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667PubMedCentralPubMedCrossRefGoogle Scholar
  53. Milton AL, Everitt BJ (2012) The persistence of maladaptive memory: addiction, drug memories and anti-relapse treatments. Neurosci Biobehav Rev 36:1119–1139PubMedCrossRefGoogle Scholar
  54. Naqvi NH, Bechara A (2010) The insula and drug addiction: an interoceptive view of pleasure, urges, and decision-making. Brain Struct Funct 214:435–450PubMedCentralPubMedCrossRefGoogle Scholar
  55. Nickerson LD, Ravichandran C, Lundahl LH, Rodolico J, Dunlap S, Trksak GH et al (2011) Cue reactivity in cannabis-dependent adolescents. Psychol Addict Behav 25:168–173PubMedCentralPubMedCrossRefGoogle Scholar
  56. O'Brien CP, Childress AR, Ehrman R, Robbins SJ (1998) Conditioning factors in drug abuse: can they explain compulsion? J Psychopharmacol 12:15–22PubMedCrossRefGoogle Scholar
  57. Pacek LR, Martins SS, Crum RM (2012) The bidirectional relationships between alcohol, cannabis, co-occurring alcohol and cannabis use disorders with major depressive disorder: Results from a national sample. J Affect Disord 148:188–195PubMedCrossRefGoogle Scholar
  58. Pessiglione M, Schmidt L, Draganski B, Kalisch R, Lau H, Dolan RJ et al (2007) How the brain translates money into force: a neuroimaging study of subliminal motivation. Science 316:904–906PubMedCentralPubMedCrossRefGoogle Scholar
  59. Pope HG Jr, Gruber AJ, Hudson JI, Huestis MA, Yurgelun-Todd D (2001) Neuropsychological performance in long-term cannabis users. Arch Gen Psychiatry 58:909–915PubMedCrossRefGoogle Scholar
  60. Potenza MN, Hong KI, Lacadie CM, Fulbright RK, Tuit KL, Sinha R (2012) Neural correlates of stress-induced and cue-induced drug craving: influences of sex and cocaine dependence. Am J Psychiatry 169:406–414PubMedCentralPubMedCrossRefGoogle Scholar
  61. Raphael B, Wooding S, Stevens G, Connor J (2005) Comorbidity: cannabis and complexity. J Psychiatr Pract 11:161–176PubMedCrossRefGoogle Scholar
  62. Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53PubMedCrossRefGoogle Scholar
  63. Roese N, Jamieson D (1993) Twenty years of bogus pipeline research: a critical review and meta-analysis. Psych Bull 114:363–375CrossRefGoogle Scholar
  64. Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE (2011) Frontal cortex and reward-guided learning and decision-making. Neuron 70:1054–1069PubMedCrossRefGoogle Scholar
  65. Schacht JP, Anton RF, Myrick H (2013) Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addict Biol 18:121–133PubMedCentralPubMedCrossRefGoogle Scholar
  66. Schroeder BE, Binzak JM, Kelley AE (2001) A common profile of prefrontal cortical activation following exposure to nicotine- or chocolate-associated contextual cues. Neuroscience 105:535–545PubMedCrossRefGoogle Scholar
  67. Schuster RM, Crane NA, Mermelstein R, Gonzalez R (2012) The influence of inhibitory control and episodic memory on the risky sexual behavior of young adult cannabis users. J Int Neuropsychol Soc 18:827–833PubMedCentralPubMedCrossRefGoogle Scholar
  68. Sheehan DV, Lecrubier Y, Harnett Sheehan K, Janavs J, Weiller E, Keskiner A et al (1997) The validity of the Mini International Neuropsychiatric Interview (MINI) according to the SCID-P and its reliability. Eur Psychiatry 12:232–241CrossRefGoogle Scholar
  69. Siep N, Roefs A, Roebroeck A, Havermans R, Bonte ML, Jansen A (2009) Hunger is the best spice: an fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex. Behav Brain Res 198:149–158PubMedCrossRefGoogle Scholar
  70. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–219PubMedCrossRefGoogle Scholar
  71. Sobell LC, Sobell MB (1991) Timeline followback: a technique for assessing self-reported alcohol consumption. Humana, TotowaGoogle Scholar
  72. Substance Abuse and Mental Health Services Administration (2012) Results from the 2011 National Survey on Drug Use and Health: summary of national findings. NSDUH series H-44, HHS publication no. (SMA) 12–4713. Substance Abuse and Mental Health Services Administration, Rockville, MDGoogle Scholar
  73. Tang DW, Fellows LK, Small DM, Dagher A (2012) Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies. Physiol Behav 106:317–324PubMedCrossRefGoogle Scholar
  74. Versace F, Engelmann JM, Jackson EF, Costa VD, Robinson JD, Lam CY et al (2011) Do brain responses to emotional images and cigarette cues differ? An fMRI study in smokers. Eur J Neurosci 34:2054–2063PubMedCentralPubMedCrossRefGoogle Scholar
  75. Wiers RW, Eberl C, Rinck M, Becker ES, Lindenmeyer J (2011) Retraining automatic action tendencies changes alcoholic patients’ approach bias for alcohol and improves treatment outcome. Psychol Sci 22:490–497PubMedCrossRefGoogle Scholar
  76. Winkielman P, Berridge KC, Wilbarger JL (2003) Unconscious affective reactions to masked happy versus angry faces influence consumption behavior and judgments of value. Pers Soc Psychol Bull 31:121–135CrossRefGoogle Scholar
  77. Wise RA (2009) Roles for nigrostriatal—not just mesocorticolimbic—dopamine in reward and addiction. Trends Neurosci 32:517–524PubMedCentralPubMedCrossRefGoogle Scholar
  78. Wolfling K, Flor H, Grusser SM (2008) Psychophysiological responses to drug-associated stimuli in chronic heavy cannabis use. Eur J Neurosci 27:976–983PubMedCrossRefGoogle Scholar
  79. Zhang X, Chen X, Yu Y, Sun D, Ma N, He S et al (2009) Masked smoking-related images modulate brain activity in smokers. Hum Brain Mapp 30:896–907PubMedCrossRefGoogle Scholar
  80. Zombeck JA, Chen GT, Johnson ZV, Rosenberg DM, Craig AB, Rhodes JS (2008) Neuroanatomical specificity of conditioned responses to cocaine versus food in mice. Physiol Behav 93:637–650PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Reagan R. Wetherill
    • 1
  • Anna Rose Childress
    • 1
    • 2
  • Kanchana Jagannathan
    • 1
  • Julian Bender
    • 1
  • Kimberly A. Young
    • 1
  • Jesse J. Suh
    • 1
    • 2
  • Charles P. O’Brien
    • 1
    • 2
  • Teresa R. Franklin
    • 1
  1. 1.Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Philadelphia VA Medical CenterPhiladelphiaUSA

Personalised recommendations