, Volume 231, Issue 4, pp 753–764 | Cite as

Vendor differences in alcohol consumption and the contribution of dopamine receptors to Pavlovian-conditioned alcohol-seeking in Long-Evans rats

  • Lindsay M. Sparks
  • Joanna M. Sciascia
  • Ziada Ayorech
  • Nadia Chaudhri
Original Investigation



Drug-associated environmental stimuli elicit craving in humans and drug-seeking in animals.


We tested the hypothesis that Pavlovian-conditioned alcohol-seeking is mediated by dopamine, using rats from two vendors.


Male, Long–Evans rats (220–240 g) from Charles River (St-Constant, QC, Canada) and Harlan Laboratories (Indianapolis, IN, USA) received 21 sessions of intermittent, 24-h access to ethanol (15 %, v/v) and water in the home-cage. Subsequently, rats were trained to discriminate between one conditioned stimulus (CS+) that was paired with ethanol (0.2 ml per CS+) and a second stimulus (CS−) that was not. Entries into a fluid port where ethanol was delivered were recorded. Next, rats were exposed to a different context where cues and ethanol were withheld. At test, responding to the CS+ and CS− without ethanol was assessed in the second, non-alcohol context. Injections (1 ml/kg; s.c.) of the dopamine D1-receptor antagonist SCH 23390 (0, 3.33, and 10 μg/kg) or dopamine D2-receptor antagonist eticlopride (0, 5, and 10 μg/kg) were administered before test.


Home-cage alcohol consumption was higher in Harlan rats than Charles River rats. At test, saline-treated rats responded more to the alcohol-predictive CS+ than the CS−. While SCH 23390 attenuated CS+ responding in rats from both vendors, eticlopride reduced CS+ responding in Harlan rats only. Subsequently, SCH 23390 but not eticlopride attenuated CS+ responding when the CS+ was again paired with ethanol.


These results indicate important differences in alcohol consumption in Long–Evans rats from different suppliers, and highlight a novel role for dopamine in Pavlovian-conditioned alcohol-seeking.


Alcoholism Relapse Reinstatement Craving Dopamine Long–Evans SCH 23390 Eticlopride Context Cues 



The National Institute of Alcohol Abuse and Alcoholism (RO1 AA14925; Patricia H. Janak, PI) funded this research. NC is the recipient of a Chercheurs-Boursiers award from Fonds de recherche du Québec - Santé, and a member of the FRQS-funded Center for Studies in Behavioral Neurobiology/Groupe de recherche en neurobiologie comportementale (CSBN/GRNC). The authors would like to thank Dr. Uri Shalev for comments on the manuscript and Atyeh Heidari for assistance in running the experiments.

Supplementary material

213_2013_3292_MOESM1_ESM.docx (70 kb)
ESM 1 (DOCX 70 kb)


  1. Bardo MT, Valone JM, Bevins RA (1999) Locomotion and conditioned place preference produced by acute intravenous amphetamine: role of dopamine receptors and individual differences in amphetamine self-administration. Psychopharmacology (Berlin) 143:39–46CrossRefGoogle Scholar
  2. Beninger RJ (1983) The role of dopamine in locomotor activity and learning. Brain Res Rev 6:173–196CrossRefGoogle Scholar
  3. Berglind WJ, Case JM, Parker MP, Fuchs RA, See RE (2006) Dopamine D1 or D2 receptor antagonism within the basolateral amygdala differentially alters the acquisition of cocaine-cue associations necessary for cue-induced reinstatement of cocaine-seeking. Neuroscience 137:699–706. doi: 10.1016/j.neuroscience.2005.08.064 PubMedCrossRefGoogle Scholar
  4. Berridge KC (2012) From prediction error to incentive salience: mesolimbic computation of reward motivation. Eur J Neurosci 35:1124–1143. doi: 10.1111/j.1460-9568.2012.07990.x PubMedCentralPubMedCrossRefGoogle Scholar
  5. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369PubMedCrossRefGoogle Scholar
  6. Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26:507–513. doi: 10.1016/S0166-2236(03)00233-9 PubMedCrossRefGoogle Scholar
  7. Bevins RA, Besheer J, Pickett KS (2001) Nicotine-conditioned locomotor activity in rats: dopaminergic and GABAergic influences on conditioned expression. Pharmacol Biochem Behav 68:135–145PubMedCrossRefGoogle Scholar
  8. Bolles RC (1961) The interaction of hunger and thirst in the rat. J Comp Physiol Psychol 54:580PubMedCrossRefGoogle Scholar
  9. Bossert JM, Poles GC, Wihbey KA, Koya E, Shaham Y (2007) Differential effects of blockade of dopamine D1-family receptors in nucleus accumbens core or shell on reinstatement of heroin-seeking induced by contextual and discrete cues. J Neurosci 27:12655–12663. doi: 10.1523/JNEUROSCI.3926-07.2007 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Carnicella S, Kharazia V, Jeanblanc J, Janak PH, Ron D (2008) GDNF is a fast-acting potent inhibitor of alcohol consumption and relapse. Proc Natl Acad Sci U S A 105:8114–8119. doi: 10.1073/pnas.0711755105 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chaudhri N, Sahuque LL, Janak PH (2008a) Context-induced relapse of conditioned behavioral responding to ethanol cues in rats. Biol Psychiatry 64:203–210. doi: 10.1016/j.biopsych.2008.03.007 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chaudhri N, Sahuque LL, Cone JJ, Janak PH (2008b) Reinstated ethanol-seeking in rats is modulated by environmental context and requires the nucleus accumbens core. Eur J Neurosci 28:2288–2298. doi: 10.1111/j.1460-9568.2008.06517.x PubMedCentralPubMedCrossRefGoogle Scholar
  13. Chaudhri N, Sahuque LL, Schairer WW, Janak PH (2009) Separable roles of the nucleus accumbens core and shell in context- and cue-induced alcohol-seeking. Neuropsychopharmacology 35:783–791. doi: 10.1038/npp.2009.187 PubMedCrossRefGoogle Scholar
  14. Ciccocioppo R, Sanna PP, Weiss F (2001) Cocaine-predictive stimulus induces drug-seeking behavior and neural activation in limbic brain regions after multiple months of abstinence: reversal by D(1) antagonists. Proc Natl Acad Sci U S A 98:1976–1981. doi: 10.1073/pnas.98.4.1976 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Conklin CA, Robin N, Perkins KA, Salkeld RP, McClernon FJ (2008) Proximal versus distal cues to smoke: the effects of environments on smokers’ cue-reactivity. Exp Clin Psychopharmacol 16:207–214. doi: 10.1037/1064-1297.16.3.207 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Conklin CA, Perkins KA, Robin N, McClernon FJ, Salkeld RP (2010) Bringing the real world into the laboratory: personal smoking and nonsmoking environments. Drug Alcohol Depend 111:58–63. doi: 10.1016/j.drugalcdep.2010.03.017 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Crombag HS, Shaham Y (2002) Renewal of drug-seeking by contextual cues after prolonged extinction in rats. Behav Neurosci 116:169–173. doi: 10.1037//0735-7044.116.1.169 PubMedCrossRefGoogle Scholar
  18. Crombag HS, Grimm JW, Shaham Y (2002) Effect of dopamine receptor antagonists on renewal of cocaine-seeking by reexposure to drug-associated contextual cues. Neuropsychopharmacology 27:1006–1015PubMedCrossRefGoogle Scholar
  19. Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114PubMedCrossRefGoogle Scholar
  20. Fuchs RA, Evans KA, Ledford CC, Parker MP, Case JM, Mehta RH, See RE (2004) The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine-seeking in rats. Neuropsychopharmacology 30:296–309. doi: 10.1038/sj.npp.1300579 CrossRefGoogle Scholar
  21. Gustafsson L, Nylander I (2006) Time-dependent alterations in ethanol intake in male Wistar rats exposed to short and prolonged daily maternal separation in a 4-bottle free-choice paradigm. Alcohol Clin Exp Res 30:2008–2016. doi: 10.1111/j.1530-0277.2006.00247.x PubMedCrossRefGoogle Scholar
  22. Hamlin AS, Blatchford KE, McNally GP (2006) Renewal of an extinguished instrumental response: neural correlates and the role of D1 dopamine receptors. Neuroscience 143:25–38. doi: 10.1016/j.neuroscience.2006.07.035 PubMedCrossRefGoogle Scholar
  23. Hamlin AS, Newby J, McNally GP (2007) The neural correlates and role of D1 dopamine receptors in renewal of extinguished alcohol-seeking. Neuroscience 146:525–536. doi: 10.1016/j.neuroscience.2007.01.063 PubMedCrossRefGoogle Scholar
  24. Hoffman DC, Beninger RJ (1985) The D1 dopamine receptor antagonist, SCH 23390 reduces locomotor activity and rearing in rats. Pharmacol Biochem Behav 22:341–342PubMedCrossRefGoogle Scholar
  25. Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 20:7489–7495PubMedGoogle Scholar
  26. Ito R, Dalley JW, Robbins TW, Everitt BJ (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 22:6247–6253PubMedGoogle Scholar
  27. Ito R, Robbins TW, Everitt BJ (2004) Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 7:389–397. doi: 10.1038/nn1217 PubMedCrossRefGoogle Scholar
  28. Katner SN, Weiss F (1999) Ethanol-associated olfactory stimuli reinstate ethanol-seeking behavior after extinction and modify extracellular dopamine levels in the nucleus accumbens. Alcohol Clin Exp Res 23:1751–1760PubMedCrossRefGoogle Scholar
  29. Keppel G (1991) Design and analysis: a researcher’s handbook. Prentice-Hall, New JerseyGoogle Scholar
  30. Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21:461–476CrossRefGoogle Scholar
  31. Litt MD, Cooney NL, Morse P (2000) Reactivity to alcohol–related stimuli in the laboratory and in the field: predictors of craving in treated alcoholics. Addiction 95:889–900PubMedCrossRefGoogle Scholar
  32. Liu X, Weiss F (2002) Reversal of ethanol-seeking behavior by D1 and D2 antagonists in an animal model of relapse: differences in antagonist potency in previously ethanol-dependent versus nondependent rats. J Pharmacol Exp Ther 300:882–889PubMedCrossRefGoogle Scholar
  33. Liu X, Jernigen C, Gharib M, Booth S, Caggiula AR, Sved AF (2010) Effects of dopamine antagonists on drug cue-induced reinstatement of nicotine-seeking behavior in rats. Behav Pharmacol 21:153–160. doi: 10.1097/FBP.0b013e328337be95 PubMedCentralPubMedCrossRefGoogle Scholar
  34. McCusker CG, Brown K (1989) Alcohol-predictive cues enhance tolerance to and precipitate “craving” for alcohol in social drinkers. J Stud Alcohol 51:494–499Google Scholar
  35. Nakajima S (1989) Subtypes of dopamine receptors involved in the mechanism of reinforcement. Neurosci Biobehav Rev 13:123–128PubMedCrossRefGoogle Scholar
  36. Nie H, Janak PH (2003) Comparison of reinstatement of ethanol- and sucrose-seeking by conditioned stimuli and priming injections of allopregnanolone after extinction in rats. Psychopharmacology (Berlin) 168:222–228. doi: 10.1007/s00213-003-1468-0 CrossRefGoogle Scholar
  37. Palm S, Roman E, Nylander I (2011) Differences in voluntary ethanol consumption in Wistar rats from five different suppliers. Alcohol 45:607–614. doi: 10.1016/j.alcohol.2010.11.005 PubMedCrossRefGoogle Scholar
  38. Ploj K, Roman E, Nylander I (2003) Long-term effects of maternal separation on ethanol intake and brain opioid and dopamine receptors in male Wistar rats. Neuroscience 121:787–799. doi: 10.1016/S0306-4522(03)00499-8 PubMedCrossRefGoogle Scholar
  39. Rohsenow DJ, Monti PM, Rubonis AV, Sirota AD, Niaura RS, Colby SM et al (1994) Cue reactivity as a predictor of drinking among male alcoholics. J Consult Clin Psychol 62:620–626PubMedCrossRefGoogle Scholar
  40. Roman E, Gustafsson L, Hyyti P, Nylander I (2005) Short and prolonged periods of maternal separation and voluntary ethanol intake in male and female ethanol-preferring AA and ethanol-avoiding ANA rats. Alcohol Clin Exp Res 29:591–601. doi: 10.1097/01.ALC.0000158933.70242.FC PubMedCrossRefGoogle Scholar
  41. Shoaib M, Spanagel R, Stohr T, Shippenberg TS (1995) Strain differences in the rewarding and dopamine-releasing effects of morphine in rats. Psychopharmacology (Berlin) 117:240–247CrossRefGoogle Scholar
  42. Simms JA, Steensland P, Medina B, Abernathy KE, Chandler LJ, Wise R, Bartlett SE (2008) Intermittent access to 20% ethanol induces high ethanol consumption in Long-Evans and Wistar rats. Alcohol Clin Exp Res 32:1816–1823. doi: 10.1111/j.1530-0277.2008.00753.x PubMedCentralPubMedCrossRefGoogle Scholar
  43. Tsiang MT, Janak PH (2006) Alcohol-seeking in C57BL/6 mice induced by conditioned cues and contexts in the extinction-reinstatement model. Alcohol 38:81–88. doi: 10.1016/j.alcohol.2006.05.004 PubMedCrossRefGoogle Scholar
  44. Wing VC, Schoaib M (2008) Contextual stimuli modulate extinction and reinstatement in rodents self-administering intravenous nicotine. Psychopharmacology (Berlin) 200:357–365. doi: 10.1007/s00213-008-1211-y CrossRefGoogle Scholar
  45. Wise RA (1973) Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacology (Berlin) 29:203–210CrossRefGoogle Scholar
  46. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494. doi: 10.1038/nrn1406 PubMedCrossRefGoogle Scholar
  47. Wise RA, Rompré PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225PubMedCrossRefGoogle Scholar
  48. Zironi I, Burattini C, Aicardi G, Janak PH (2006) Context is a trigger for relapse to alcohol. Behav Brain Res 167:150–155. doi: 10.1016/j.bbr.2005.09.007 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lindsay M. Sparks
    • 1
  • Joanna M. Sciascia
    • 1
  • Ziada Ayorech
    • 1
  • Nadia Chaudhri
    • 1
  1. 1.Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Department of PsychologyConcordia UniversityMontrealCanada

Personalised recommendations