Advertisement

Psychopharmacology

, Volume 231, Issue 6, pp 1125–1146 | Cite as

Assessing behavioural and cognitive domains of autism spectrum disorders in rodents: current status and future perspectives

  • Martien J. Kas
  • Jeffrey C. Glennon
  • Jan Buitelaar
  • Elodie Ey
  • Barbara Biemans
  • Jacqueline Crawley
  • Robert H. Ring
  • Clara Lajonchere
  • Frederic Esclassan
  • John Talpos
  • Lucas P. J. J. Noldus
  • J. Peter H. Burbach
  • Thomas Steckler
Review

Abstract

The establishment of robust and replicable behavioural testing paradigms with translational value for psychiatric diseases is a major step forward in developing and testing etiology-directed treatment for these complex disorders. Based on the existing literature, we have generated an inventory of applied rodent behavioural testing paradigms relevant to autism spectrum disorders (ASD). This inventory focused on previously used paradigms that assess behavioural domains that are affected in ASD, such as social interaction, social communication, repetitive behaviours and behavioural inflexibility, cognition as well as anxiety behaviour. A wide range of behavioural testing paradigms for rodents were identified. However, the level of face and construct validity is highly variable. The predictive validity of these paradigms is unknown, as etiology-directed treatments for ASD are currently not on the market. To optimise these studies, future efforts should address aspects of reproducibility and take into account data about the neurodevelopmental underpinnings and trajectory of ASD. In addition, with the increasing knowledge of processes underlying ASD, such as sensory information processes and synaptic plasticity, phenotyping efforts should include multi-level automated analysis of, for example, representative task-related behavioural and electrophysiological read-outs.

Keywords

Behaviour Cognition Animal model Genetics Phenotype 

Notes

Acknowledgements

The authors participate in the EU-AIMS project that receives support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115300, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013), from the EFPIA companies in kind contribution and from Autism Speaks.

References

  1. Ahern TH, Modi ME, Burkett JP, Young LJ (2009) Evaluation of two automated metrics for analyzing partner preference tests. J Neurosci Methods 182:180–188PubMedCentralPubMedGoogle Scholar
  2. Andari E, Duhamel JR, Zalla T, Herbrecht E, Leboyer M, Sirigu A (2010) Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci U S A 107(9):4389–4394Google Scholar
  3. Arnold HM, Bruno JP, Sarter M (2003) Assessment of sustained and divided attention in rats. Curr Protoc Neurosci Chapter 8:UnitGoogle Scholar
  4. Arriaga G, Zhou EP, Jarvis ED (2012) Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds. PLoS One 7:e46610PubMedCentralPubMedGoogle Scholar
  5. Bader PL, Faizi M, Kim LH, Owen SF, Tadross MR, Alfa RW, Bett GC, Tsien RW, Rasmusson RL, Shamloo M (2011) Mouse model of Timothy syndrome recapitulates triad of autistic traits. Proc Natl Acad Sci U S A 108:15432–15437PubMedCentralPubMedGoogle Scholar
  6. Baird G, Simonoff E, Pickles A, Chandler S, Loucas T, Meldrum D, Charman T (2006) Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP). Lancet 368:210–215PubMedGoogle Scholar
  7. Bambini-Junior V, Rodrigues L, Behr GA, Moreira JC, Riesgo R, Gottfried C (2011) Animal model of autism induced by prenatal exposure to valproate: behavioral changes and liver parameters. Brain Res 1408:8–16. doi:  10.1016/j.brainres.2011.06.015 Google Scholar
  8. Bangash MA, Park JM, Melnikova T, Wang D, Jeon SK, Lee D, Syeda S, Kim J, Kouser M, Schwartz J, Cui Y, Zhao X, Speed HE, Kee SE, Tu JC, Hu JH, Petralia RS, Linden DJ, Powell CM, Savonenko A, Xiao B, Worley PF (2011) Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism. Cell 145:758–772PubMedCentralPubMedGoogle Scholar
  9. Barch DM, Carter CS, Arnsten A, Buchanan RW, Cohen JD, Geyer M, Green MF, Krystal JH, Nuechterlein K, Robbins T, Silverstein S, Smith EE, Strauss M, Wykes T, Heinssen R (2009) Selecting paradigms from cognitive neuroscience for translation into use in clinical trials: proceedings of the third CNTRICS meeting. Schizophr Bull 35:109–114PubMedGoogle Scholar
  10. Barch DM, Smith E (2008) The cognitive neuroscience of working memory: relevance to CNTRICS and schizophrenia. Biol Psychiatry 64:11–17PubMedCentralPubMedGoogle Scholar
  11. Baudouin SJ, Gaudias J, Gerharz S, Hatstatt L, Zhou K, Punnakkal P, Tanaka KF, Spooren W, Hen R, De Zeeuw CI, Vogt K, Scheiffele P (2012) Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism. Science 338:128–132PubMedGoogle Scholar
  12. Belmonte MK, Yurgelun-Todd DA (2003) Functional anatomy of impaired selective attention and compensatory processing in autism. Brain Res Cogn Brain Res 17:651–664PubMedGoogle Scholar
  13. Bender AC, Natola H, Ndong C, Holmes GL, Scott RC, Lenck-Santini PP (2013) Focal Scn1a knockdown induces cognitive impairment without seizures. Neurobiol Dis 54:297–307Google Scholar
  14. Benetti F, Mello PB, Bonini JS, Monteiro S, Cammarota M, Izquierdo I (2009) Early postnatal maternal deprivation in rats induces memory deficits in adult life that can be reversed by donepezil and galantamine. Int J Dev Neurosci 27:59–64PubMedGoogle Scholar
  15. Benjamini Y, Fonio E, Galili T, Havkin GZ, Golani I (2011) Quantifying the buildup in extent and complexity of free exploration in mice. Proc Natl Acad Sci U S A 108 Suppl 3:15580–7. doi:  10.1073/pnas.1014837108
  16. Bennetto L, Pennington BF, Rogers SJ (1996) Intact and impaired memory functions in autism. Child Dev 67:1816–1835PubMedGoogle Scholar
  17. Berry RJ (1981) Town mouse, country mouse—adaptation and adaptability in Mus domesticus (M. musculus domesticus). Mamma Rev 11:91–136Google Scholar
  18. Betancur C, Buxbaum JD (2013) Shank3 haploinsufficiency: a “common” but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism 4:17PubMedCentralPubMedGoogle Scholar
  19. Bielsky IF, Young LJ (2004) Oxytocin, vasopressin, and social recognition in mammals. Peptides 25:1565–1574PubMedGoogle Scholar
  20. Bigham S, Boucher J, Mayes A, Anns S (2010) Assessing recollection and familiarity in autistic spectrum disorders: methods and findings. J Autism Dev Disord 40:878–889PubMedGoogle Scholar
  21. Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324PubMedGoogle Scholar
  22. Bissonette GB, Martins GJ, Franz TM, Harper ES, Schoenbaum G, Powell EM (2008) Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. J Neurosci 28:11124–11130PubMedCentralPubMedGoogle Scholar
  23. Bourgeron T, Jamain S, Granon S (2006) Animal models of autism - proposed behaviorial paradigms and biolgoical studies. In: Fisch GS, Flint J (eds) Contemporary clinical neuroscience: transgenic and knockout models of neuropsychiatric disorders. Humana Press, Totowa, p 151–174Google Scholar
  24. Bouwknecht JA, Paylor R (2008) Pitfalls in the interpretation of genetic and pharmacological effects on anxiety-like behaviour in rodents. Behav Pharmacol 19:385–402PubMedGoogle Scholar
  25. Bowler DM, Briskman JA (2000) Photographic cues do not always facilitate performance on false belief tasks in children with autism. J Autism Dev Disord 30:305–316PubMedGoogle Scholar
  26. Bressers WM, Kruk MR, Van Erp AM, Willekens-Bramer DC, Haccou P, Meelis E (1995) A time-structured analysis of hypothalamically induced increases in self-grooming and activity in the rat. Behav Neurosci 109:1158–1171PubMedGoogle Scholar
  27. Brielmaier J, Matteson PG, Silverman JL, Senerth JM, Kelly S, Genestine M, Millonig JH, DiCicco-Bloom E, Crawley JN, Brodkin ES (2007) BALB/c mice: low sociability and other phenotypes that may be relevant to autism. Behav Brain Res 176:53–65Google Scholar
  28. Brudzynski SM (2013) Ethotransmission: communication of emotional states through ultrasonic vocalization in rats. Curr Opin Neurobiol 23:310–317Google Scholar
  29. Burgdorf J, Kroes RA, Moskal JR, Pfaus JG, Brudzynski SM, Panksepp J (2008) Ultrasonic vocalizations of rats (Rattus norvegicus) during mating, play, and aggression: behavioral concomitants, relationship to reward, and self-administration of playback. J Comp Psychol 122:357–367PubMedGoogle Scholar
  30. Burgdorf J, Panksepp J, Moskal JR (2011) Frequency-modulated 50 kHz ultrasonic vocalizations: a tool for uncovering the molecular substrates of positive affect. Neurosci Biobehav Rev 35:1831–1836PubMedGoogle Scholar
  31. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafo MR (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14:365–376PubMedGoogle Scholar
  32. Calcagnetti DJ, Schechter MD (1992) Place conditioning reveals the rewarding aspect of social interaction in juvenile rats. Physiol Behav 51:667–672PubMedGoogle Scholar
  33. Carter CS, Williams JR, Witt DM, Insel TR (1992) Oxytocin and social bonding. Ann N Y Acad Sci 652:204–211PubMedGoogle Scholar
  34. Chabout J, Serreau P, Ey E, Bellier L, Aubin T, Bourgeron T, Granon S (2012) Adult male mice emit context-specific ultrasonic vocalizations that are modulated by prior isolation or group rearing environment. PLoS One 7:e29401PubMedCentralPubMedGoogle Scholar
  35. Chadman KK, Gong S, Scattoni ML, Boltuck SE, Gandhy SU, Heintz N, Crawley JN (2008) Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice. Autism Res 1:147–158PubMedCentralPubMedGoogle Scholar
  36. Charman T, Pickles A, Simonoff E, Chandler S, Loucas T, Baird G (2011) IQ in children with autism spectrum disorders: data from the Special Needs and Autism Project (SNAP). Psychol Med 41:619–627PubMedGoogle Scholar
  37. Cheh MA, Millonig JH, Roselli LM, Ming X, Jacobsen E, Kamdar S, Wagner GC (2006) En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res 1116:166–176PubMedGoogle Scholar
  38. Chevallier C, Kohls G, Troiani V, Brodkin ES, Schultz RT (2012) The social motivation theory of autism. Trends Cogn Sci 16:231–239PubMedCentralPubMedGoogle Scholar
  39. Chez MG, Aimonovitch M, Buchanan T, Mrazek S, Tremb RJ (2004) Treating autistic spectrum disorders in children: utility of the cholinesterase inhibitor rivastigmine tartrate. J Child Neurol 19:165–169PubMedGoogle Scholar
  40. Chudasama Y, Robbins TW (2004) Psychopharmacological approaches to modulating attention in the five-choice serial reaction time task: implications for schizophrenia. Psychopharmacology (Berl) 174:86–98Google Scholar
  41. Ciesielski KT, Courchesne E, Elmasian R (1990) Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals. Electroencephalogr Clin Neurophysiol 75:207–220PubMedGoogle Scholar
  42. Ciesielski KT, Knight JE, Prince RJ, Harris RJ, Handmaker SD (1995) Event-related potentials in cross-modal divided attention in autism. Neuropsychologia 33:225–246PubMedGoogle Scholar
  43. Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672PubMedGoogle Scholar
  44. Crawley JN (2007) Mouse behavioral assays relevant to the symptoms of autism. Brain Pathol 17:448–459PubMedGoogle Scholar
  45. Crowder WF, Hutto CW Jr (1992) Operant place conditioning measures examined using two nondrug reinforcers. Pharmacol Biochem Behav 41:817–824PubMedGoogle Scholar
  46. Daenen EW, Wolterink G, Gerrits MA, van Ree JM (2002) Amygdala or ventral hippocampal lesions at two early stages of life differentially affect open field behaviour later in life; an animal model of neurodevelopmental psychopathological disorders. Behav Brain Res 131:67–78PubMedGoogle Scholar
  47. Dahhaoui M, Caston J, Lannou J, Avenel S (1992) Role of the cerebellum in habituation exploration behavior in the rat. Physiol Behav 52:339–344PubMedGoogle Scholar
  48. de Bruin JP, Sanchez-Santed F, Heinsbroek RP, Donker A, Postmes P (1994) A behavioural analysis of rats with damage to the medial prefrontal cortex using the Morris water maze: evidence for behavioural flexibility, but not for impaired spatial navigation. Brain Res 652:323–333PubMedGoogle Scholar
  49. de Mooij-van Malsen AJ, van Lith HA, Oppelaar H, Hendriks J, de Wit M, Kostrzewa E, Breen G, Collier DA, Olivier B, Kas MJ (2009) Interspecies trait genetics reveals association of Adcy8 with mouse avoidance behavior and a human mood disorder. Biol Psychiatry 66:1123–1130PubMedGoogle Scholar
  50. de Visser L, van den Bos R, Kuurman WW, Kas MJ, Spruijt BM (2006) Novel approach to the behavioural characterization of inbred mice: automated home cage observations. Genes Brain Behav 5:458–466PubMedGoogle Scholar
  51. DeLorey TM, Sahbaie P, Hashemi E, Homanics GE, Clark JD (2008) Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav Brain Res 187:207–220PubMedCentralPubMedGoogle Scholar
  52. Devlin B, Scherer SW (2012) Genetic architecture in autism spectrum disorder. Curr Opin Genet Dev 22:229–237PubMedGoogle Scholar
  53. Di CB, Panayi F, Gobert A, Dekeyne A, Sicard D, De GL, Millan MJ (2007) Activation of dopamine D1 receptors enhances cholinergic transmission and social cognition: a parallel dialysis and behavioural study in rats. Int J Neuropsychopharmacol 10:383–399Google Scholar
  54. Dichter G, Adolphs R (2012) Reward processing in autism: a thematic series. J Neurodev Disord 4:20PubMedCentralPubMedGoogle Scholar
  55. Dichter GS, Radonovich KJ, Turner-Brown LM, Lam KS, Holtzclaw TN, Bodfish JW (2010) Performance of children with autism spectrum disorders on the dimension-change card sort task. J Autism Dev Disord 40:448–456PubMedCentralPubMedGoogle Scholar
  56. Diergaarde L, Gerrits MA, Brouwers JP, van Ree JM (2005) Early amygdala damage disrupts performance on medial prefrontal cortex-related tasks but spares spatial learning and memory in the rat. Neuroscience 130:581–590PubMedGoogle Scholar
  57. Dluzen DE, Muraoka S, Engelmann M, Ebner K, Landgraf R (2000) Oxytocin induces preservation of social recognition in male rats by activating alpha-adrenoceptors of the olfactory bulb. Eur J Neurosci 12:760–766PubMedGoogle Scholar
  58. Donohue SE, Darling EF, Mitroff SR (2012) Links between multisensory processing and autism. Exp Brain Res 222:377–387PubMedGoogle Scholar
  59. Douglas LA, Varlinskaya EI, Spear LP (2004) Rewarding properties of social interactions in adolescent and adult male and female rats: impact of social versus isolate housing of subjects and partners. Dev Psychobiol 45:153–162PubMedGoogle Scholar
  60. Douglas RM, Neve A, Quittenbaum JP, Alam NM, Prusky GT (2006) Perception of visual motion coherence by rats and mice. Vision Res 46:2842–2847PubMedGoogle Scholar
  61. Drai D, Kafkafi N, Benjamini Y, Elmer G, Golani I (2001) Rats and mice share common ethologically relevant parameters of exploratory behavior. Behav Brain Res 125:133–140PubMedGoogle Scholar
  62. Dudova I, Vodicka J, Havlovicova M, Sedlacek Z, Urbanek T, Hrdlicka M (2011) Odor detection threshold, but not odor identification, is impaired in children with autism. Eur Child Adolesc Psychiatry 20:333–340PubMedGoogle Scholar
  63. Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493:327–337PubMedCentralPubMedGoogle Scholar
  64. Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, Ramesh V, Silva AJ (2008a) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14:843–848PubMedCentralPubMedGoogle Scholar
  65. Ehninger D, Li W, Fox K, Stryker MP, Silva AJ (2008b) Reversing neurodevelopmental disorders in adults. Neuron 60:950–960PubMedCentralPubMedGoogle Scholar
  66. Enard W, Gehre S, Hammerschmidt K, Holter SM, Blass T, Somel M, Bruckner MK, Schreiweis C, Winter C, Sohr R, Becker L, Wiebe V, Nickel B, Giger T, Muller U, Groszer M, Adler T, Aguilar A, Bolle I, Calzada-Wack J, Dalke C, Ehrhardt N, Favor J, Fuchs H, Gailus-Durner V, Hans W, Holzlwimmer G, Javaheri A, Kalaydjiev S, Kallnik M, Kling E, Kunder S, Mossbrugger I, Naton B, Racz I, Rathkolb B, Rozman J, Schrewe A, Busch DH, Graw J, Ivandic B, Klingenspor M, Klopstock T, Ollert M, Quintanilla-Martinez L, Schulz H, Wolf E, Wurst W, Zimmer A, Fisher SE, Morgenstern R, Arendt T, de Angelis MH, Fischer J, Schwarz J, Paabo S (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137:961–971PubMedGoogle Scholar
  67. Engelmann M, Hadicke J, Noack J (2011) Testing declarative memory in laboratory rats and mice using the nonconditioned social discrimination procedure. Nat Protoc 6:1152–1162PubMedGoogle Scholar
  68. Engelmann M, Wotjak CT, Landgraf R (1995) Social discrimination procedure: an alternative method to investigate juvenile recognition abilities in rats. Physiol Behav 58:315–321PubMedGoogle Scholar
  69. Esclassan F, Coutureau E, Di SG, Marchand AR (2009) A cholinergic-dependent role for the entorhinal cortex in trace fear conditioning. J Neurosci 29:8087–8093PubMedGoogle Scholar
  70. Etherton MR, Blaiss CA, Powell CM, Sudhof TC (2009) Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci U S A 106:17998–18003PubMedCentralPubMedGoogle Scholar
  71. Ey E, Leblond CS, Bourgeron T (2011) Behavioral profiles of mouse models for autism spectrum disorders. Autism Res 4:5–16PubMedGoogle Scholar
  72. Ey E, Yang M, Katz AM, Woldeyohannes L, Silverman JL, Leblond CS, Faure P, Torquet N, Le Sourd AM, Bourgeron T, Crawley JN (2013) Absence of deficits in social behaviors and ultrasonic vocalizations in later generations of mice lacking neuroligin4. Genes Brain Behav (in press)Google Scholar
  73. Falter CM, Noreika V, Wearden JH, Bailey AJ (2012) More consistent, yet less sensitive: interval timing in autism spectrum disorders. Q J Exp Psychol (Hove ) 65:2093–2107Google Scholar
  74. Fernell E, Eriksson MA, Gillberg C (2013) Early diagnosis of autism and impact on prognosis: a narrative review. Clin Epidemiol 5:33–43PubMedCentralPubMedGoogle Scholar
  75. File SE (1994) Chronic exposure to noise modifies the anxiogenic response, but not the hypoactivity, detected on withdrawal from chronic ethanol treatment. Psychopharmacology (Berl) 116:369–372Google Scholar
  76. File SE, Hyde JR (1978) Can social interaction be used to measure anxiety? Br J Pharmacol 62:19–24PubMedGoogle Scholar
  77. File SE, Pellow S, Braestrup C (1985) Effects of the beta-carboline, FG 7142, in the social interaction test of anxiety and the holeboard: correlations between behaviour and plasma concentrations. Pharmacol Biochem Behav 22:941–944PubMedGoogle Scholar
  78. File SE, Seth P (2003) A review of 25 years of the social interaction test. Eur J Pharmacol 463:35–53PubMedGoogle Scholar
  79. Foley AG, Gannon S, Rombach-Mullan N, Prendergast A, Barry C, Cassidy AW, Regan CM (2012) Class I histone deacetylase inhibition ameliorates social cognition and cell adhesion molecule plasticity deficits in a rodent model of autism spectrum disorder. Neuropharmacology 63:750–760PubMedGoogle Scholar
  80. Fombonne E (2003) Epidemiological surveys of autism and other pervasive developmental disorders: an update. J Autism Dev Disord 33(4):365–382Google Scholar
  81. Fonio E, Benjamini Y, Golani I (2009) Freedom of movement and the stability of its unfolding in free exploration of mice. Proc Natl Acad Sci U S A 106:21335–21340PubMedCentralPubMedGoogle Scholar
  82. Frith U (1996) Cognitive explanations of autism. Acta Paediatr Suppl 416:63–68PubMedGoogle Scholar
  83. Gaigg SB, Bowler DM (2007) Differential fear conditioning in Asperger’s syndrome: implications for an amygdala theory of autism. Neuropsychologia 45:2125–2134PubMedGoogle Scholar
  84. Galef BG, Jr. (2003) Social learning of food preferences in rodents: rapid appetitive learning. Curr Protoc Neurosci Chapter 8:Unit 8.5D. doi:  10.1002/0471142301.ns0805ds21.:Unit
  85. Garcia-Villamisar D, Della SS (2002) Dual-task performance in adults with autism. Cogn Neuropsychiatry 7:63–74PubMedGoogle Scholar
  86. Garretson HB, Fein D, Waterhouse L (1990) Sustained attention in children with autism. J Autism Dev Disord 20:101–114PubMedGoogle Scholar
  87. Geurts HM, Vissers ME (2012) Elderly with autism: executive functions and memory. J Autism Dev Disord 42:665–675PubMedCentralPubMedGoogle Scholar
  88. Ghanizadeh A (2011) Can tactile sensory processing differentiate between children with autistic disorder and asperger’s disorder? Innov Clin Neurosci 8:25–30PubMedCentralPubMedGoogle Scholar
  89. Gilbert SJ, Bird G, Brindley R, Frith CD, Burgess PW (2008) Atypical recruitment of medial prefrontal cortex in autism spectrum disorders: an fMRI study of two executive function tasks. Neuropsychologia 46:2281–2291PubMedCentralPubMedGoogle Scholar
  90. Gold MS, Gold JR (1975) Autism and attention: theoretical considerations and a pilot study using set reaction time. Child Psychiatry Hum Dev 6:68–80PubMedGoogle Scholar
  91. Grant E, MacIntosh J (1963) A comparison of the social postures of some common laboratory rodents. Behaviour 21:246–259Google Scholar
  92. Green SA, Ben-Sasson A (2010) Anxiety disorders and sensory over-responsivity in children with autism spectrum disorders: is there a causal relationship? J Autism Dev Disord 40:1495–1504PubMedCentralPubMedGoogle Scholar
  93. Greer JM, Capecchi MR (2002) Hoxb8 is required for normal grooming behavior in mice. Neuron 33:23–34PubMedGoogle Scholar
  94. Griffith EM, Pennington BF, Wehner EA, Rogers SJ (1999) Executive functions in young children with autism. Child Dev 70:817–832PubMedGoogle Scholar
  95. Groszer M, Keays DA, Deacon RM, de Bono JP, Prasad-Mulcare S, Gaub S, Baum MG, French CA, Nicod J, Coventry JA, Enard W, Fray M, Brown SD, Nolan PM, Paabo S, Channon KM, Costa RM, Eilers J, Ehret G, Rawlins JN, Fisher SE (2008) Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Curr Biol 18:354–362PubMedCentralPubMedGoogle Scholar
  96. Guastella AJ, Einfeld SL, Gray KM, Rinehart NJ, Tonge BJ, Lambert TJ, Hickie IB (2010) Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry 67:692–694PubMedGoogle Scholar
  97. Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27:322–326PubMedGoogle Scholar
  98. Haesler S, Wada K, Nshdejan A, Morrisey EE, Lints T, Jarvis ED, Scharff C (2004) FoxP2 expression in avian vocal learners and non-learners. J Neurosci 24:3164–3175PubMedGoogle Scholar
  99. Haller J, Bakos N (2002) Stress-induced social avoidance: a new model of stress-induced anxiety? Physiol Behav 77:327–332PubMedGoogle Scholar
  100. Hammerschmidt K, Radyushkin K, Ehrenreich H, Fischer J (2009) Female mice respond to male ultrasonic ‘songs’ with approach behaviour. Biol Lett 5:589–592PubMedCentralPubMedGoogle Scholar
  101. Hammerschmidt K, Radyushkin K, Ehrenreich H, Fischer J (2012a) The structure and usage of female and male mouse ultrasonic vocalizations reveal only minor differences. PLoS One 7:e41133PubMedCentralPubMedGoogle Scholar
  102. Hammerschmidt K, Reisinger E, Westekemper K, Ehrenreich L, Strenzke N, Fischer J (2012b) Mice do not require auditory input for the normal development of their ultrasonic vocalizations. BMC Neurosci 13:40. doi: 10.1186/1471-2202-13-40.:40–13
  103. Hardan AY, Handen BL (2002) A retrospective open trial of adjunctive donepezil in children and adolescents with autistic disorder. J Child Adolesc Psychopharmacol 12:237–241PubMedGoogle Scholar
  104. Hashimoto H, Moritani N, Aoki-Komori S, Tanaka M, Saito TR (2004) Comparison of ultrasonic vocalizations emitted by rodent pups. Exp Anim 53:409–416PubMedGoogle Scholar
  105. Hasselmo ME, Stern CE (2006) Mechanisms underlying working memory for novel information. Trends Cogn Sci 10:487–493PubMedCentralPubMedGoogle Scholar
  106. Hayashi ML, Rao BS, Seo JS, Choi HS, Dolan BM, Choi SY, Chattarji S, Tonegawa S (2007) Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc Natl Acad Sci U S A 104:11489–11494PubMedCentralPubMedGoogle Scholar
  107. Hofer MA, Shair HN, Brunelli SA (2002) Ultrasonic vocalizations in rat and mouse pups. Curr Protoc Neurosci Chapter 8:Unit 8.14. doi:  10.1002/0471142301.ns0814s17.:Unit
  108. Hoffmann F, Musolf K, Penn DJ (2012) Spectrographic analyses reveal signals of individuality and kinship in the ultrasonic courtship vocalizations of wild house mice. Physiol Behav 105:766–771PubMedGoogle Scholar
  109. Hughes C, Plumet MH, Leboyer M (1999) Towards a cognitive phenotype for autism: increased prevalence of executive dysfunction and superior spatial span amongst siblings of children with autism. J Child Psychol Psychiatry 40:705–718PubMedGoogle Scholar
  110. Hughes C, Russell J, Robbins TW (1994) Evidence for executive dysfunction in autism. Neuropsychologia 32:477–492PubMedGoogle Scholar
  111. Humphreys AP, Einon D (2013) Play as a reinforcer for maze-learning in juvenile rats. Anim Behav 29:259–270Google Scholar
  112. Hupfeld D, Distler C, Hoffmann KP (2006) Motion perception deficits in albino ferrets (Mustela putorius furo). Vision Res 46:2941–2948PubMedGoogle Scholar
  113. Jacome LF, Burket JA, Herndon AL, Deutsch SI (2011) Genetically inbred Balb/c mice differ from outbred Swiss Webster mice on discrete measures of sociability: relevance to a genetic mouse model of autism spectrum disorders. Autism Res 4:393–400PubMedGoogle Scholar
  114. Jamain S, Radyushkin K, Hammerschmidt K, Granon S, Boretius S, Varoqueaux F, Ramanantsoa N, Gallego J, Ronnenberg A, Winter D, Frahm J, Fischer J, Bourgeron T, Ehrenreich H, Brose N (2008) Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc Natl Acad Sci U S A 105:1710–1715PubMedCentralPubMedGoogle Scholar
  115. Johnson KA, Robertson IH, Kelly SP, Silk TJ, Barry E, Daibhis A, Watchorn A, Keavey M, Fitzgerald M, Gallagher L, Gill M, Bellgrove MA (2007) Dissociation in performance of children with ADHD and high-functioning autism on a task of sustained attention. Neuropsychologia 45:2234–2245PubMedCentralPubMedGoogle Scholar
  116. Jordan R (2003) Social play and autistic spectrum disorders: a perspective on theory, implications and educational approaches. Autism 7:347–360PubMedGoogle Scholar
  117. Joseph RM, McGrath LM, Tager-Flusberg H (2005) Executive dysfunction and its relation to language ability in verbal school-age children with autism. Dev Neuropsychol 27:361–378PubMedCentralPubMedGoogle Scholar
  118. Just MA, Keller TA, Malave VL, Kana RK, Varma S (2012) Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav Rev 36:1292–1313PubMedCentralPubMedGoogle Scholar
  119. Kalueff AV, Aldridge JW, Laporte JL, Murphy DL, Tuohimaa P (2007) Analyzing grooming microstructure in neurobehavioral experiments. Nat Protoc 2:2538–2544PubMedGoogle Scholar
  120. Kantor S, Anheuer ZE, Bagdy G (2000) High social anxiety and low aggression in Fawn–Hooded rats. Physiol Behav 71:551–557PubMedGoogle Scholar
  121. Kas MJ, de Mooij-van Malsen AJ, Olivier B, Spruijt BM, van Ree JM (2008) Differential genetic regulation of motor activity and anxiety-related behaviors in mice using an automated home cage task. Behav Neurosci 122:769–776PubMedGoogle Scholar
  122. Kas MJ, Fernandes C, Schalkwyk LC, Collier DA (2007) Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men. Mol Psychiatry 12:324–330PubMedGoogle Scholar
  123. Kas MJ, van Ree JM (2004) Dissecting complex behaviours in the post-genomic era. Trends Neurosci 27:366–369PubMedGoogle Scholar
  124. Kikusui T, Nakanishi K, Nakagawa R, Nagasawa M, Mogi K, Okanoya K (2011) Cross fostering experiments suggest that mice songs are innate. PLoS One 6:e17721PubMedCentralPubMedGoogle Scholar
  125. Kim KC, Kim P, Go HS, Choi CS, Park JH, Kim HJ, Jeon SJ, Dela Pena IC, Han SH, Cheong JH, Ryu JH, Shin CY (2013) Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J Neurochem 124:832–843PubMedGoogle Scholar
  126. Kim YS, Leventhal BL, Koh YJ, Fombonne E, Laska E, Lim EC, Cheon KA, Kim SJ, Kim YK, Lee H, Song DH, Grinker RR (2011) Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry 168:904–912PubMedGoogle Scholar
  127. Kosaka H, Munesue T, Ishitobi M, Asano M, Omori M, Sato M, et al (2012) Long-term oxytocin administration improves social behaviors in a girl with autistic disorder. BMC Psychiatry 12:110. doi:  10.1186/1471-244X-12-110.:110–2 Google Scholar
  128. Koshino H, Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA (2008) fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cereb Cortex 18:289–300PubMedGoogle Scholar
  129. Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 15:816–818PubMedCentralPubMedGoogle Scholar
  130. Laarakker MC, Reinders NR, Bruining H, Ophoff RA, Kas MJ (2012) Sex-dependent novelty response in neurexin-1alpha mutant mice. PLoS One 7:e31503PubMedCentralPubMedGoogle Scholar
  131. Landa RJ, Goldberg MC (2005) Language, social, and executive functions in high functioning autism: a continuum of performance. J Autism Dev Disord 35:557–573PubMedGoogle Scholar
  132. Langen M, Durston S, Kas MJ, van Engeland H, Staal WG (2011a) The neurobiology of repetitive behavior: and men. Neurosci Biobehav Rev 35:356–365PubMedGoogle Scholar
  133. Langen M, Kas MJ, Staal WG, van Engeland H, Durston S (2011b) The neurobiology of repetitive behavior: of mice. Neurosci Biobehav Rev 35:345–355PubMedGoogle Scholar
  134. Lightowler S, Kennett GA, Williamson IJ, Blackburn TP, Tulloch IF (1994) Anxiolytic-like effect of paroxetine in a rat social interaction test. Pharmacol Biochem Behav 49:281–285PubMedGoogle Scholar
  135. Losh M, Adolphs R, Poe MD, Couture S, Penn D, Baranek GT, Piven J (2009) Neuropsychological profile of autism and the broad autism phenotype. Arch Gen Psychiatry 66:518–526PubMedCentralPubMedGoogle Scholar
  136. Lubow RE (2005) Construct validity of the animal latent inhibition model of selective attention deficits in schizophrenia. Schizophr Bull 31:139–153PubMedGoogle Scholar
  137. Luna B, Minshew NJ, Garver KE, Lazar NA, Thulborn KR, Eddy WF, Sweeney JA (2002) Neocortical system abnormalities in autism: an fMRI study of spatial working memory. Neurology 59:834–840PubMedGoogle Scholar
  138. Mao R, Page DT, Merzlyak I, Kim C, Tecott LH, Janak PH, Rubenstein JL, Sur M (2009) Reduced conditioned fear response in mice that lack Dlx1 and show subtype-specific loss of interneurons. J Neurodev Disord 1:224–236PubMedCentralPubMedGoogle Scholar
  139. Markou A (2009) Accruing preclinical evidence about metabotropic glutamate 5 receptor antagonists as treatments for drug dependence highlights the irreplaceable contributions of animal studies to the discovery of new medications for human disorders. Neuropsychopharmacology 34:817–819PubMedCentralPubMedGoogle Scholar
  140. Markram H, Rinaldi T, Markram K (2007) The intense world syndrome—an alternative hypothesis for autism. Front Neurosci 1:77–96PubMedCentralPubMedGoogle Scholar
  141. Markram K, Rinaldi T, La MD, Sandi C, Markram H (2008) Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology 33:901–912PubMedGoogle Scholar
  142. Maroteaux G, Loos M, van der Sluis S, Koopmans B, Aarts E, van Gassen K, Geurts A, Largaespada DA, Spruijt BM, Stiedl O, Smit AB, Verhage M (2012) High-throughput phenotyping of avoidance learning in mice discriminates different genotypes and identifies a novel gene. Genes Brain Behav 11:772–784PubMedCentralPubMedGoogle Scholar
  143. Martin LA, Lane L, Maupin Z, Berk B (2011) The development of operant tasks of social motivation for mouse models of social pathology. International Meeting for Autism Research, San Diego, CAGoogle Scholar
  144. McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN (2008) Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav 7:152–163PubMedGoogle Scholar
  145. Meidenbauer JJ, Mantis JG, Seyfried TN (2011) The EL mouse: a natural model of autism and epilepsy. Epilepsia 52:347–357PubMedGoogle Scholar
  146. Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I, Yee BK, Feldon J (2006) The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci 26:4752–4762PubMedGoogle Scholar
  147. Michalon A, Sidorov M, Ballard TM, Ozmen L, Spooren W, Wettstein JG, Jaeschke G, Bear MF, Lindemann L (2012) Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 74:49–56PubMedGoogle Scholar
  148. Miczek KA, Maxson SC, Fish EW, Faccidomo S (2001) Aggressive behavioral phenotypes in mice. Behav Brain Res 125:167–181PubMedGoogle Scholar
  149. Moon J, Beaudin AE, Verosky S, Driscoll LL, Weiskopf M, Levitsky DA, Crnic LS, Strupp BJ (2006) Attentional dysfunction, impulsivity, and resistance to change in a mouse model of fragile X syndrome. Behav Neurosci 120:1367–1379PubMedGoogle Scholar
  150. Motomura N, Shimizu K, Shimizu M, Aoki-Komori S, Taniguchi K, Serizawa I, Saito TR (2002) A comparative study of isolation-induced ultrasonic vocalization in rodent pups. Exp Anim 51:187–190PubMedGoogle Scholar
  151. Moy SS, Nadler JJ (2008) Advances in behavioral genetics: mouse models of autism. Mol Psychiatry 13:4–26PubMedGoogle Scholar
  152. Murphy D, Spooren W (2012) EU-AIMS: a boost to autism research. Nat Rev Drug Discov 11:815–816PubMedGoogle Scholar
  153. Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, Young NB, Barbaro RP, Piven J, Magnuson TR, Crawley JN (2004) Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 3:303–314PubMedGoogle Scholar
  154. Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K, Tomonaga S, Watanabe Y, Chung YJ, Banerjee R, Iwamoto K, Kato T, Okazawa M, Yamauchi K, Tanda K, Takao K, Miyakawa T, Bradley A, Takumi T (2009) Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 137:1235–1246PubMedCentralPubMedGoogle Scholar
  155. Nicolas LB, Prinssen EP (2006) Social approach-avoidance behavior of a high-anxiety strain of rats: effects of benzodiazepine receptor ligands. Psychopharmacology (Berl) 184:65–74Google Scholar
  156. Nicolson R, Craven-Thuss B, Smith J (2006) A prospective, open-label trial of galantamine in autistic disorder. J Child Adolesc Psychopharmacol 16:621–629PubMedGoogle Scholar
  157. Niesink RJ, van Ree JM (1989) Involvement of opioid and dopaminergic systems in isolation-induced pinning and social grooming of young rats. Neuropharmacology 28:411–418PubMedGoogle Scholar
  158. Normansell L, Panksepp J (1990) Effects of morphine and naloxone on play-rewarded spatial discrimination in juvenile rats. Dev Psychobiol 23:75–83PubMedGoogle Scholar
  159. O’Connor K (2012) Auditory processing in autism spectrum disorder: a review. Neurosci Biobehav Rev 36:836–854PubMedGoogle Scholar
  160. Olton DS, Wenk GL, Church RM, Meck WH (1988) Attention and the frontal cortex as examined by simultaneous temporal processing. Neuropsychologia 26:307–318PubMedGoogle Scholar
  161. Osterweil EK, Chuang SC, Chubykin AA, Sidorov M, Bianchi R, Wong RK, Bear MF (2013) Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome. Neuron 77:243–250PubMedCentralPubMedGoogle Scholar
  162. Ozonoff S, Jensen J (1999) Brief report: specific executive function profiles in three neurodevelopmental disorders. J Autism Dev Disord 29:171–177PubMedGoogle Scholar
  163. Palanza P, Della Seta D, Ferrari PF, Parmigiani S (2013) Female competition in wild house mice depends upon timing of female/male settlement and kinship between females. Animal Behav 69:1259–1271Google Scholar
  164. Pang KC, Yoder RM, Olton DS (2001) Neurons in the lateral agranular frontal cortex have divided attention correlates in a simultaneous temporal processing task. Neuroscience 103:615–628PubMedGoogle Scholar
  165. Panksepp JB, Jochman KA, Kim JU, Koy JJ, Wilson ED, Chen Q, Wilson CR, Lahvis GP (2007) Affiliative behavior, ultrasonic communication and social reward are influenced by genetic variation in adolescent mice. PLoS One 2:e351PubMedCentralPubMedGoogle Scholar
  166. Pearson BL, Bettis JK, Meyza KZ, Yamamoto LY, Blanchard DC, Blanchard RJ (2012) Absence of social conditioned place preference in BTBR T+tf/J mice: relevance for social motivation testing in rodent models of autism. Behav Brain Res 233:99–104PubMedCentralPubMedGoogle Scholar
  167. Pearson BL, Pobbe RL, Defensor EB, Oasay L, Bolivar VJ, Blanchard DC, Blanchard RJ (2011) Motor and cognitive stereotypies in the BTBR T+tf/J mouse model of autism. Genes Brain Behav 10:228–235PubMedCentralPubMedGoogle Scholar
  168. Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, Feng G (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472:437–442PubMedCentralPubMedGoogle Scholar
  169. Pellis SM, Pellis VC (1997) The prejuvenile onset of play fighting in laboratory rats (Rattus norvegicus). Dev Psychobiol 31:193–205PubMedGoogle Scholar
  170. Pellow S, Chopin P, File SE (1985) Are the anxiogenic effects of yohimbine mediated by its action at benzodiazepine receptors? Neurosci Lett 55:5–9PubMedGoogle Scholar
  171. Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285PubMedGoogle Scholar
  172. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, Magalhaes TR, Correia C, Abrahams BS, Almeida J, Bacchelli E, Bader GD, Bailey AJ, Baird G, Battaglia A, Berney T, Bolshakova N, Bolte S, Bolton PF, Bourgeron T, Brennan S, Brian J, Bryson SE, Carson AR, Casallo G, Casey J, Chung BH, Cochrane L, Corsello C, Crawford EL, Crossett A, Cytrynbaum C, Dawson G, de Jonge M, Delorme R, Drmic I, Duketis E, Duque F, Estes A, Farrar P, Fernandez BA, Folstein SE, Fombonne E, Freitag CM, Gilbert J, Gillberg C, Glessner JT, Goldberg J, Green A, Green J, Guter SJ, Hakonarson H, Heron EA, Hill M, Holt R, Howe JL, Hughes G, Hus V, Igliozzi R, Kim C, Klauck SM, Kolevzon A, Korvatska O, Kustanovich V, Lajonchere CM, Lamb JA, Laskawiec M, Leboyer M, Le CA, Leventhal BL, Lionel AC, Liu XQ, Lord C, Lotspeich L, Lund SC, Maestrini E, Mahoney W, Mantoulan C, Marshall CR, McConachie H, McDougle CJ, McGrath J, McMahon WM, Merikangas A, Migita O, Minshew NJ, Mirza GK, Munson J, Nelson SF, Noakes C, Noor A, Nygren G, Oliveira G, Papanikolaou K, Parr JR, Parrini B, Paton T, Pickles A, Pilorge M, Piven J, Ponting CP, Posey DJ, Poustka A, Poustka F, Prasad A, Ragoussis J, Renshaw K, Rickaby J, Roberts W, Roeder K, Roge B, Rutter ML, Bierut LJ, Rice JP, Salt J, Sansom K, Sato D, Segurado R, Sequeira AF, Senman L, Shah N, Sheffield VC, Soorya L, Sousa I, Stein O, Sykes N, Stoppioni V, Strawbridge C, Tancredi R, Tansey K, Thiruvahindrapduram B, Thompson AP, Thomson S, Tryfon A, Tsiantis J, van Engeland H, Vincent JB, Volkmar F, Wallace S, Wang K, Wang Z, Wassink TH, Webber C, Weksberg R, Wing K, Wittemeyer K, Wood S, Wu J, Yaspan BL, Zurawiecki D, Zwaigenbaum L, Buxbaum JD, Cantor RM, Cook EH, Coon H, Cuccaro ML, Devlin B, Ennis S, Gallagher L, Geschwind DH, Gill M, Haines JL, Hallmayer J, Miller J, Monaco AP, Nurnberger JI Jr, Paterson AD, Pericak-Vance MA, Schellenberg GD, Szatmari P, Vicente AM, Vieland VJ, Wijsman EM, Scherer SW, Sutcliffe JS, Betancur C (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466:368–372PubMedCentralPubMedGoogle Scholar
  173. Piven J, Palmer P (1997) Cognitive deficits in parents from multiple-incidence autism families. J Child Psychol Psychiatry 38:1011–1021PubMedGoogle Scholar
  174. Pletnikov MV, Moran TH, Carbone KM (2002) Borna disease virus infection of the neonatal rat: developmental brain injury model of autism spectrum disorders. Front Biosci 7:d593–d607PubMedGoogle Scholar
  175. Pobbe RL, Pearson BL, Defensor EB, Bolivar VJ, Blanchard DC, Blanchard RJ (2010) Expression of social behaviors of C57BL/6J versus BTBR inbred mouse strains in the visible burrow system. Behav Brain Res 214:443–449PubMedCentralPubMedGoogle Scholar
  176. Popik P, Vetulani J, van Ree JM (1992) Low doses of oxytocin facilitate social recognition in rats. Psychopharmacology (Berl) 106:71–74Google Scholar
  177. Portfors CV (2007) Types and functions of ultrasonic vocalizations in laboratory rats and mice. J Am Assoc Lab Anim Sci 46:28–34PubMedGoogle Scholar
  178. Prior MR, Chen CS (1976) Short-term and serial memory in autistic, retarded, and normal children. J Autism Child Schizophr 6:121–131PubMedGoogle Scholar
  179. Radyushkin K, Hammerschmidt K, Boretius S, Varoqueaux F, El-Kordi A, Ronnenberg A, Winter D, Frahm J, Fischer J, Brose N, Ehrenreich H (2009) Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav 8:416–425PubMedGoogle Scholar
  180. Rajendran G, Mitchell P (2013) Cognitive theories of autism. Dev Rev 27:224–260Google Scholar
  181. Relkovic D, Doe CM, Humby T, Johnstone KA, Resnick JL, Holland AJ, Hagan JJ, Wilkinson LS, Isles AR (2010) Behavioural and cognitive abnormalities in an imprinting centre deletion mouse model for Prader-Willi syndrome. Eur J Neurosci 31:156–164PubMedGoogle Scholar
  182. Restivo L, Ferrari F, Passino E, Sgobio C, Bock J, Oostra BA, Bagni C, Ammassari-Teule M (2005) Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proc Natl Acad Sci U S A 102:11557–11562PubMedCentralPubMedGoogle Scholar
  183. Rimmele U, Hediger K, Heinrichs M, Klaver P (2009) Oxytocin makes a face in memory familiar. J Neurosci 29:38–42PubMedGoogle Scholar
  184. Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl) 163:362–380Google Scholar
  185. Robinson EB, Koenen KC, McCormick MC, Munir K, Hallett V, Happe F, Plomin R, Ronald A (2012) A multivariate twin study of autistic traits in 12-year-olds: testing the fractionable autism triad hypothesis. Behav Genet 42:245–255PubMedCentralPubMedGoogle Scholar
  186. Robinson S, Goddard L, Dritschel B, Wisley M, Howlin P (2009) Executive functions in children with autism spectrum disorders. Brain Cogn 71:362–368PubMedGoogle Scholar
  187. Ronald A, Happe F, Price TS, Baron-Cohen S, Plomin R (2006) Phenotypic and genetic overlap between autistic traits at the extremes of the general population. J Am Acad Child Adolesc Psychiatry 45:1206–1214PubMedGoogle Scholar
  188. Rossignol DA (2009) Novel and emerging treatments for autism spectrum disorders: a systematic review. Ann Clin Psychiatry 21:213–236PubMedGoogle Scholar
  189. Russell J, Jarrold C, Henry L (1996) Working memory in children with autism and with moderate learning difficulties. J Child Psychol Psychiatry 37:673–686PubMedGoogle Scholar
  190. Ryan BC, Young NB, Crawley JN, Bodfish JW, Moy SS (2010) Social deficits, stereotypy and early emergence of repetitive behavior in the C58/J inbred mouse strain. Behav Brain Res 208:178–188PubMedCentralPubMedGoogle Scholar
  191. Ryan BC, Young NB, Moy SS, Crawley JN (2008) Olfactory cues are sufficient to elicit social approach behaviors but not social transmission of food preference in C57BL/6J mice. Behav Brain Res 193:235–242PubMedCentralPubMedGoogle Scholar
  192. Sala M, Braida D, Lentini D, Busnelli M, Bulgheroni E, Capurro V, Finardi A, Donzelli A, Pattini L, Rubino T, Parolaro D, Nishimori K, Parenti M, Chini B (2011) Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. Biol Psychiatry 69:875–882PubMedGoogle Scholar
  193. Sales GD, Pye D (1974) Ultrasonic communication by animals. Chapman & Hall, LondonGoogle Scholar
  194. Salinger WL, Ladrow P, Wheeler C (2003) Behavioral phenotype of the reeler mutant mouse: effects of RELN gene dosage and social isolation. Behav Neurosci 117:1257–1275PubMedGoogle Scholar
  195. Salmond CH, Ashburner J, Connelly A, Friston KJ, Gadian DG, Vargha-Khadem F (2005) The role of the medial temporal lobe in autistic spectrum disorders. Eur J Neurosci 22:764–772PubMedGoogle Scholar
  196. Sams-Dodd F (1995) Automation of the social interaction test by a video-tracking system: behavioural effects of repeated phencyclidine treatment. J Neurosci Methods 59:157–167PubMedGoogle Scholar
  197. Scattoni ML, Ricceri L, Crawley JN (2011) Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters. Genes Brain Behav 10:44–56PubMedCentralPubMedGoogle Scholar
  198. Scharff C, Haesler S (2005) An evolutionary perspective on FoxP2: strictly for the birds? Curr Opin Neurobiol 15:694–703PubMedGoogle Scholar
  199. Schneider T, Przewlocki R (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30:80–89PubMedGoogle Scholar
  200. Schneider T, Roman A, Basta-Kaim A, Kubera M, Budziszewska B, Schneider K, Przewlocki R (2008) Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 33:728–740PubMedGoogle Scholar
  201. Schneider T, Turczak J, Przewlocki R (2006) Environmental enrichment reverses behavioral alterations in rats prenatally exposed to valproic acid: issues for a therapeutic approach in autism. Neuropsychopharmacology 31:36–46PubMedGoogle Scholar
  202. Sewell GD (1970) Ultrasonic communication in rodents. Nature 227:410PubMedGoogle Scholar
  203. Shemer A, Whitaker-Azmitia PM, Azmitia EC (1988) Effects of prenatal 5-methoxytryptamine and parachlorophenylalanine on serotonergic uptake and behavior in the neonatal rat. Pharmacol Biochem Behav 30:847–851PubMedGoogle Scholar
  204. Shmelkov SV, Hormigo A, Jing D, Proenca CC, Bath KG, Milde T, Shmelkov E, Kushner JS, Baljevic M, Dincheva I, Murphy AJ, Valenzuela DM, Gale NW, Yancopoulos GD, Ninan I, Lee FS, Rafii S (2010) Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat Med 16(598–602):1pGoogle Scholar
  205. Silverman JL, Smith DG, Rizzo SJ, Karras MN, Turner SM, Tolu SS, Bryce DK, Smith DL, Fonseca K, Ring RH, Crawley JN (2012) Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med 4(131):131ra51Google Scholar
  206. Silverman JL, Tolu SS, Barkan CL, Crawley JN (2010a) Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology 35:976–989PubMedGoogle Scholar
  207. Silverman JL, Turner SM, Barkan CL, Tolu SS, Saxena R, Hung AY, Sheng M, Crawley JN (2011) Sociability and motor functions in Shank1 mutant mice. Brain Res 1380:120–137. doi:  10.1016/j.brainres.2010.09.026 Google Scholar
  208. Silverman JL, Yang M, Lord C, Crawley JN (2010b) Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 11:490–502PubMedCentralPubMedGoogle Scholar
  209. Sinzig J, Bruning N, Morsch D, Lehmkuhl G (2008) Attention profiles in autistic children with and without comorbid hyperactiivity and attention problems. Acta Neuropsychiatrica 20:207–215Google Scholar
  210. Skokauskas N, Gallagher L (2010) Psychosis, affective disorders and anxiety in autistic spectrum disorder: prevalence and nosological considerations. Psychopathology 43:8–16PubMedGoogle Scholar
  211. Smalley SL (1998) Autism and tuberous sclerosis. J Autism Dev Disord 28(5):407–414Google Scholar
  212. Spencer CM, Graham DF, Yuva-Paylor LA, Nelson DL, Paylor R (2008) Social behavior in Fmr1 knockout mice carrying a human FMR1 transgene. Behav Neurosci 122:710–715PubMedGoogle Scholar
  213. Spruijt BM, De Heer RC (2012) A SWOT analysis on automating measuring behaviour. In: Proceedings of Measuring Behavior, Utrecht, The Netherlands, 28–31 AugustGoogle Scholar
  214. Spruijt BM, De Visser L (2006) Advanced behavioural screening: automated home cage ethology. Drug Discovery Today Technologies 3:231–237Google Scholar
  215. Spruijt BM, Gispen WH (1984) Behavioral sequences as an easily quantifiable parameter in experimental studies. Physiol Behav 32:707–710PubMedGoogle Scholar
  216. Spruijt BM, Welbergen P, Brakkee J, Gispen WH (1988) An ethological analysis of excessive grooming in young and aged rats. Ann N Y Acad Sci 525:89–100PubMedGoogle Scholar
  217. State MW, Levitt P (2011) The conundrums of understanding genetic risks for autism spectrum disorders. Nat Neurosci 14:1499–1506PubMedGoogle Scholar
  218. Sugimoto H, Okabe S, Kato M, Koshida N, Shiroishi T, Mogi K, Kikusui T, Koide T (2011) A role for strain differences in waveforms of ultrasonic vocalizations during male–female interaction. PLoS One 6:e22093PubMedCentralPubMedGoogle Scholar
  219. Sun L, Grutzner C, Bolte S, Wibral M, Tozman T, Schlitt S, Poustka F, Singer W, Freitag CM, Uhlhaas PJ (2012) Impaired gamma-band activity during perceptual organization in adults with autism spectrum disorders: evidence for dysfunctional network activity in frontal-posterior cortices. J Neurosci 32:9563–9573PubMedGoogle Scholar
  220. Suzuki G, Harper KM, Hiramoto T, Funke B, Lee M, Kang G, Buell M, Geyer MA, Kucherlapati R, Morrow B, Mannisto PT, Agatsuma S, Hiroi N (2009) Over-expression of a human chromosome 22q11.2 segment including TXNRD2, COMT and ARVCF developmentally affects incentive learning and working memory in mice. Hum Mol Genet 18:3914–3925PubMedGoogle Scholar
  221. Takumi T (2011) The neurobiology of mouse models syntenic to human chromosome 15q. J Neurodev Disord 3:270–281PubMedCentralPubMedGoogle Scholar
  222. Tanimura Y, King MA, Williams DK, Lewis MH (2011) Development of repetitive behavior in a mouse model: roles of indirect and striosomal basal ganglia pathways. Int J Dev Neurosci 29:461–467PubMedCentralPubMedGoogle Scholar
  223. Tavassoli T, Baron-Cohen S (2012) Taste identification in adults with autism spectrum conditions. J Autism Dev Disord 42:1419–1424PubMedGoogle Scholar
  224. Taylor GT, Frechmann T, Royalty J (1986) Social behaviour and testicular activity of juvenile rats. J Endocrinol 110:533–537PubMedGoogle Scholar
  225. Teramitsu I, Poopatanapong A, Torrisi S, White SA (2010) Striatal FoxP2 is actively regulated during songbird sensorimotor learning. PLoS One 5:e8548PubMedCentralPubMedGoogle Scholar
  226. Terranova ML, Laviola G (2005) Scoring of social interactions and play in mice during adolescence. Curr Protoc Toxicol Chapter 13:Unit13.10. doi:  10.1002/0471140856.tx1310s26.:Unit13
  227. Thiel KJ, Okun AC, Neisewander JL (2008) Social reward-conditioned place preference: a model revealing an interaction between cocaine and social context rewards in rats. Drug Alcohol Depend 96:202–212PubMedCentralPubMedGoogle Scholar
  228. Treit D, Engin E, McEown K (2010) Animal models of anxiety and anxiolytic drug action. Curr Top Behav Neurosci 2:121–160PubMedGoogle Scholar
  229. Trezza V, Campolongo P, Vanderschuren LJ (2011) Evaluating the rewarding nature of social interactions in laboratory animals. Dev Cogn Neurosci 1:444–458PubMedGoogle Scholar
  230. Trezza V, Damsteegt R, Vanderschuren LJ (2009) Conditioned place preference induced by social play behavior: parametrics, extinction, reinstatement and disruption by methylphenidate. Eur Neuropsychopharmacol 19:659–669PubMedCentralPubMedGoogle Scholar
  231. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, Steinberg J, Crawley JN, Regehr WG, Sahin M (2012) Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647–651PubMedCentralPubMedGoogle Scholar
  232. van den Berg CL, Hol T, van Ree JM, Spruijt BM, Everts H, Koolhaas JM (1999) Play is indispensable for an adequate development of coping with social challenges in the rat. Dev Psychobiol 34:129–138PubMedGoogle Scholar
  233. Van Kerkhof LW, Achterberg EJ, Lesscher HM, Trezza V, Vanderschuren LJ (2012) Dissociating the rewarding and motivational properties of social play behavior in adolescent rats: the role of dopamine, opioids and endocannabinoids. Poster presentation on DOPAMINE 2013 Program, 24 May, p 295.06Google Scholar
  234. Van KM, Selbach K, Schneider R, Schiegel E, Boess F, Schreiber R (2004) AR-R 17779 improves social recognition in rats by activation of nicotinic alpha7 receptors. Psychopharmacology (Berl) 172:375–383Google Scholar
  235. Wahlsten D, Metten P, Phillips TJ, Boehm SL, Burkhart-Kasch S, Dorow J, Doerksen S, Downing C, Fogarty J, Rodd-Henricks K, Hen R, McKinnon CS, Merrill CM, Nolte C, Schalomon M, Schlumbohm JP, Sibert JR, Wenger CD, Dudek BC, Crabbe JC (2003) Different data from different labs: lessons from studies of gene-environment interaction. J Neurobiol 54:283–311PubMedGoogle Scholar
  236. Wang H, Liang S, Burgdorf J, Wess J, Yeomans J (2008) Ultrasonic vocalizations induced by sex and amphetamine in M2, M4, M5 muscarinic and D2 dopamine receptor knockout mice. PLoS One 3:e1893PubMedCentralPubMedGoogle Scholar
  237. Warburton VL, Sales GD, Milligan SR (1989) The emission and elicitation of mouse ultrasonic vocalizations: the effects of age, sex and gonadal status. Physiol Behav 45:41–47PubMedGoogle Scholar
  238. Webb DM, Zhang J (2005) FoxP2 in song-learning birds and vocal-learning mammals. J Hered 96:212–216PubMedGoogle Scholar
  239. Weber M, Swerdlow NR (2008) Rat strain differences in startle gating-disruptive effects of apomorphine occur with both acoustic and visual prepulses. Pharmacol Biochem Behav 88:306–311PubMedCentralPubMedGoogle Scholar
  240. White SA, Fisher SE, Geschwind DH, Scharff C, Holy TE (2006) Singing mice, songbirds, and more: models for FOXP2 function and dysfunction in human speech and language. J Neurosci 26:10376–10379PubMedCentralPubMedGoogle Scholar
  241. White SW, Oswald D, Ollendick T, Scahill L (2009) Anxiety in children and adolescents with autism spectrum disorders. Clin Psychol Rev 29:216–229PubMedCentralPubMedGoogle Scholar
  242. White SW, Roberson-Nay R (2009) Anxiety, social deficits, and loneliness in youth with autism spectrum disorders. J Autism Dev Disord 39:1006–1013PubMedGoogle Scholar
  243. Williams DL, Goldstein G, Minshew NJ (2005) Impaired memory for faces and social scenes in autism: clinical implications of memory dysfunction. Arch Clin Neuropsychol 20:1–15PubMedGoogle Scholar
  244. Winslow JT, Hearn EF, Ferguson J, Young LJ, Matzuk MM, Insel TR (2000) Infant vocalization, adult aggression, and fear behavior of an oxytocin null mutant mouse. Horm Behav 37:145–155PubMedGoogle Scholar
  245. Wohr M, Moles A, Schwarting RK, D’Amato FR (2011) Lack of social exploratory activation in male mu-opioid receptor KO mice in response to playback of female ultrasonic vocalizations. Soc Neurosci 6:76–87PubMedGoogle Scholar
  246. Won H, Lee HR, Gee HY, Mah W, Kim JI, Lee J, Ha S, Chung C, Jung ES, Cho YS, Park SG, Lee JS, Lee K, Kim D, Bae YC, Kaang BK, Lee MG, Kim E (2012) Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486:261–265PubMedGoogle Scholar
  247. Wrenn CC, Harris AP, Saavedra MC, Crawley JN (2003) Social transmission of food preference in mice: methodology and application to galanin-overexpressing transgenic mice. Behav Neurosci 117:21–31PubMedGoogle Scholar
  248. Wurbel H (2002) Behavioral phenotyping enhanced—beyond (environmental) standardization. Genes Brain Behav 1:3–8PubMedGoogle Scholar
  249. Yang M, Bozdagi O, Scattoni ML, Wohr M, Roullet FI, Katz AM, Abrams DN, Kalikhman D, Simon H, Woldeyohannes L, Zhang JY, Harris MJ, Saxena R, Silverman JL, Buxbaum JD, Crawley JN (2012) Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci 32:6525–6541PubMedCentralPubMedGoogle Scholar
  250. Yang M, Silverman JL, Crawley JN (2011) Automated three-chambered social approach task for mice. Curr Protoc Neurosci Chapter 8:Unit 8.26. doi:  10.1002/0471142301.ns0826s56.:Unit
  251. Yerys BE, Wallace GL, Jankowski KF, Bollich A, Kenworthy L (2011) Impaired Consonant Trigrams Test (CTT) performance relates to everyday working memory difficulties in children with autism spectrum disorders. Child Neuropsychol 17:391–399PubMedCentralPubMedGoogle Scholar
  252. Zeskind PS, McMurray MS, Garber KA, Neuspiel JM, Cox ET, Grewen KM, et al (2011) Development of translational methods in spectral analysis of human infant crying and rat pup ultrasonic vocalizations for early neurobehavioral assessment. Front Psychiatry 2:56. doi:  10.3389/fpsyt.2011.00056
  253. Zhang Y, Cazakoff BN, Thai CA, Howland JG (2012) Prenatal exposure to a viral mimetic alters behavioural flexibility in male, but not female, rats. Neuropharmacology 62:1299–1307PubMedGoogle Scholar
  254. Zhao Y, Fung C, Shin D, Shin BC, Thamotharan S, Sankar R, Ehninger D, Silva A, Devaskar SU (2010) Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders. Mol Psychiatry 15:286–299PubMedGoogle Scholar
  255. Zippelius H-M, Schleidt WM (1956) Ultraschall-Laute bei jungen Mausen. Naturwissenschaften 43:502Google Scholar
  256. Zoghbi HY, Bear MF (2012) Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol 4(3)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martien J. Kas
    • 1
  • Jeffrey C. Glennon
    • 2
  • Jan Buitelaar
    • 2
  • Elodie Ey
    • 3
    • 4
    • 5
  • Barbara Biemans
    • 6
  • Jacqueline Crawley
    • 7
  • Robert H. Ring
    • 8
  • Clara Lajonchere
    • 8
    • 9
  • Frederic Esclassan
    • 10
  • John Talpos
    • 11
  • Lucas P. J. J. Noldus
    • 12
  • J. Peter H. Burbach
    • 1
  • Thomas Steckler
    • 11
  1. 1.Department of Translational Neuroscience, Brain Center Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, and Karakter Child and Adolescent Psychiatry University CenterRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  3. 3.Human Genetics and Cognitive FunctionsInstitute PasteurParisFrance
  4. 4.CNRS URA 2182 ‘Genes, Synapses and Cognition’Institut PasteurParisFrance
  5. 5.Sorbonne Paris Cité, Human Genetics and Cognitive FunctionsUniversity Paris DiderotParisFrance
  6. 6.Department of NeuroscienceF. Hoffmann-La Roche Ltd.BaselSwitzerland
  7. 7.Department of Psychiatry and Behavioral SciencesUniversity of California Davis School of Medicine SacramentoSacramentoUSA
  8. 8.Autism speaksPrincetonUSA
  9. 9.Department of Biomedical EngineeringKeck School of Medicine University of Southern CaliforniaCaliforniaUSA
  10. 10.Lilly Centre for Cognitive Neuroscience, Lilly Research LaboratoriesEli Lilly & Co. Ltd, Erl Wood ManorSurreyUK
  11. 11.Janssen Research & DevelopmentBeerseBelgium
  12. 12.Noldus Information Technology BVWageningenThe Netherlands

Personalised recommendations