Advertisement

Psychopharmacology

, Volume 231, Issue 2, pp 379–392 | Cite as

Monoaminergic modulation of behavioural and electrophysiological indices of error processing

  • Jessica J. M. Barnes
  • Redmond G. O’Connell
  • L. Sanjay Nandam
  • Angela J. Dean
  • Mark A. Bellgrove
Original Investigation

Abstract

Rationale

Error processing is a critical executive function that is impaired in a large number of clinical populations. Although the neural underpinnings of this function have been investigated for decades and critical error-related components in the human electroencephalogram (EEG), such as the error-related negativity (ERN) and the error positivity (Pe), have been characterised, our understanding of the relative contributions of key neurotransmitters to the generation of these components remains limited.

Objectives

The current study sought to determine the effects of pharmacological manipulation of the dopamine, noradrenaline and serotonin neurotransmitter systems on key behavioural and event-related potential correlates of error processing.

Methods

A randomised, double-blinded, placebo-controlled, crossover design was employed. Monoamine levels were manipulated using the clinically relevant drugs methylphenidate, atomoxetine and citalopram, in comparison to placebo. Under each of the four drug conditions, participants underwent EEG recording while performing a flanker task.

Results

Only methylphenidate produced significant improvement in performance accuracy, which was without concomitant slowing of reaction time. Methylphenidate also increased the amplitude of an early electrophysiological index of error processing, the ERN. Citalopram increased the amplitude of the correct-response negativity, another component associated with response processing.

Conclusions

The effects of methylphenidate in this study are consistent with theoretical accounts positing catecholamine modulation of error monitoring. Our data suggest that enhancing catecholamine function has the potential to remediate the error-monitoring deficits that are seen in a wide range of psychiatric conditions.

Keywords

Atomoxetine Citalopram Dopamine Error positivity Error processing Error-related negativity Methylphenidate Noradrenaline Performance monitoring Serotonin 

Notes

Acknowledgments

This work was supported by a grant from the National Health and Medical Research Council of Australia (NHMRC) (569532) to MAB. MAB is supported by a Career Development Award from the NHMRC, Australia. We would like to thank the Wesley Hospital Pharmacy for dispensing the drugs associated with this project.

Conflict of interest

Both LSN and MAB have received reimbursement from Lilly Pharmaceuticals for conference travel expenses and for speaking at conferences. The author MAB has received speaker's fees from Janssen-Cilag. The author LSN has received speaker's fees from AstraZeneca, Bristol-Myers Squibb, Boehringer Ingelheim and Janssen-Cilag. The authors JJMB, RGO and AJD report no biomedical financial interests or potential conflicts of interest.

Supplementary material

213_2013_3246_MOESM1_ESM.pdf (355 kb)
ESM 1 (PDF 355 kb)

References

  1. Agam Y, Hamalainen MS, Lee AK, Dyckman KA, Friedman JS, Isom M, Makris N, Manoach DS (2011) Multimodal neuroimaging dissociates hemodynamic and electrophysiological correlates of error processing. Proc Natl Acad Sci U S A 108:17556–17561PubMedCentralPubMedCrossRefGoogle Scholar
  2. Arnsten AF (2009) Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 10:410–422PubMedCentralPubMedCrossRefGoogle Scholar
  3. Arnsten AF, Dudley AG (2005) Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav Brain Funct 1:2PubMedCentralPubMedCrossRefGoogle Scholar
  4. Aston-Jones G, Cohen JD (2005) Adaptive gain and the role of the locus coeruleus–norepinephrine system in optimal performance. J Comp Neurol 493:99–110PubMedCrossRefGoogle Scholar
  5. Bari A, Aston-Jones G (2013) Atomoxetine modulates spontaneous and sensory-evoked discharge of locus coeruleus noradrenergic neurons. Neuropharmacology 64:53–64PubMedCentralPubMedCrossRefGoogle Scholar
  6. Barnes JJ, Dean AJ, Nandam LS, O'Connell RG, Bellgrove MA (2011) The molecular genetics of executive function: role of monoamine system genes. Biol Psychiatry 69:e127–e143PubMedCrossRefGoogle Scholar
  7. Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AF, Kelley AE, Schmeichel B, Hamilton C, Spencer RC (2006) Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Brain Res Brain Res Rev 60:1111–1120Google Scholar
  8. Beste C, Domschke K, Kolev V, Yordanova J, Baffa A, Falkenstein M, Konrad C (2010) Functional 5-HT1a receptor polymorphism selectively modulates error-specific subprocesses of performance monitoring. Hum Brain Mapp 31:621–630PubMedGoogle Scholar
  9. Bond A, Lader M (1974) The use of analogue scales in rating subjective feelings. Br J Med Psychol 47:211–218CrossRefGoogle Scholar
  10. Botvinick MM, Cohen JD, Carter CS (2004) Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 8:539–546PubMedCrossRefGoogle Scholar
  11. Brazil IA, de Bruijn ER, Bulten BH, von Borries AK, van Lankveld JJ, Buitelaar JK, Verkes RJ (2009) Early and late components of error monitoring in violent offenders with psychopathy. Biol Psychiatry 65:137–143PubMedCrossRefGoogle Scholar
  12. Burle B, Roger C, Allain S, Vidal F, Hasbroucq T (2008) Error negativity does not reflect conflict: a reappraisal of conflict monitoring and anterior cingulate cortex activity. J Cogn Neurosci 20:1637–1655PubMedCrossRefGoogle Scholar
  13. Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27:699–711PubMedCrossRefGoogle Scholar
  14. Cassidy SM, Robertson IH, O'Connell RG (2012) Retest reliability of event-related potentials: evidence from a variety of paradigms. Psychophysiology 49:659–664PubMedCrossRefGoogle Scholar
  15. Chamberlain SR, Del Campo N, Dowson J, Muller U, Clark L, Robbins TW, Sahakian BJ (2007) Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 62:977–984PubMedCrossRefGoogle Scholar
  16. Chamberlain SR, Hampshire A, Muller U, Rubia K, Del Campo N, Craig K, Regenthal R, Suckling J, Roiser JP, Grant JE, Bullmore ET, Robbins TW, Sahakian BJ (2009) Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry 65:550–555PubMedCrossRefGoogle Scholar
  17. Cools R, D'Esposito M (2011) Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69:e113–e125PubMedCentralPubMedCrossRefGoogle Scholar
  18. Davies PL, Segalowitz SJ, Gavin WJ (2004) Development of response-monitoring ERPs in 7- to 25-year-olds. Dev Neuropsychol 25:355–376PubMedCrossRefGoogle Scholar
  19. Dayan P, Yu AJ (2006) Phasic norepinephrine: a neural interrupt signal for unexpected events. Network 17:335–350PubMedCrossRefGoogle Scholar
  20. de Bruijn ER, Hulstijn W, Verkes RJ, Ruigt GS, Sabbe BG (2004) Drug-induced stimulation and suppression of action monitoring in healthy volunteers. Psychopharmacology (Berl) 177:151–160CrossRefGoogle Scholar
  21. de Bruijn ER, Sabbe BG, Hulstijn W, Ruigt GS, Verkes RJ (2006) Effects of antipsychotic and antidepressant drugs on action monitoring in healthy volunteers. Brain Res 1105:122–129PubMedCrossRefGoogle Scholar
  22. Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25:11730–11737PubMedCrossRefGoogle Scholar
  23. Dehaene S, Posner MI, Tucker DM (1994) Localization of a neural system for error detection and compensation. Psychol Sci 5:303–305CrossRefGoogle Scholar
  24. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21PubMedCrossRefGoogle Scholar
  25. Dockree PM, Kelly SP, Robertson IH, Reilly RB, Foxe JJ (2005) Neurophysiological markers of alert responding during goal-directed behavior: a high-density electrical mapping study. Neuroimage 27:587–601PubMedCrossRefGoogle Scholar
  26. Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a non-search task. Percept Psychophys 16:143–149CrossRefGoogle Scholar
  27. Falkenstein M, Hohnsbein J, Hoormann J, Blanke L (1991) Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr Clin Neurophysiol 78:447–455PubMedCrossRefGoogle Scholar
  28. Falkenstein M, Hoormann J, Christ S, Hohnsbein J (2000) ERP components on reaction errors and their functional significance: a tutorial. Biol Psychol 51:87–107PubMedCrossRefGoogle Scholar
  29. Falkenstein M, Hielscher H, Dziobek I, Schwarzenau P, Hoormann J, Sunderman B, Hohnsbein J (2001) Action monitoring, error detection, and the basal ganglia: an ERP study. Neuroreport 12:157–161PubMedCrossRefGoogle Scholar
  30. Fallgatter AJ, Herrmann MJ, Roemmler J, Ehlis AC, Wagener A, Heidrich A, Ortega G, Zeng Y, Lesch KP (2004) Allelic variation of serotonin transporter function modulates the brain electrical response for error processing. Neuropsychopharmacology 29:1506–1511PubMedCrossRefGoogle Scholar
  31. Foti D, Kotov R, Bromet E, Hajcak G (2012) Beyond the broken error-related negativity: functional and diagnostic correlates of error processing in psychosis. Biol Psychiatry 71:864–872PubMedCentralPubMedCrossRefGoogle Scholar
  32. Franken IH, van Strien JW, Franzek EJ, van de Wetering BJ (2007) Error-processing deficits in patients with cocaine dependence. Biol Psychol 75:45–51PubMedCrossRefGoogle Scholar
  33. Gamo NJ, Wang M, Arnsten AF (2010) Methylphenidate and atomoxetine enhance prefrontal function through alpha2-adrenergic and dopamine D1 receptors. J Am Acad Child Adolesc Psychiatry 49:1011–1023PubMedCentralPubMedCrossRefGoogle Scholar
  34. Geburek AJ, Rist F, Gediga G, Stroux D, Pedersen A (2012) Electrophysiological indices of error monitoring in juvenile and adult attention deficit hyperactivity disorder (ADHD)—a meta-analytic appraisal. Int J Psychophysiol 87:349–362PubMedCrossRefGoogle Scholar
  35. Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin EA (1993) Neural system for error-detection and compensation. Psychol Sci 4:385–390CrossRefGoogle Scholar
  36. Gehring WJ, Himle J, Nisenson LG (2000) Action-monitoring dysfunction in obsessive-compulsive disorder. Psychol Sci 11:1–6PubMedCrossRefGoogle Scholar
  37. Gratton G, Coles MG, Donchin E (1992) Optimizing the use of information: strategic control of activation of responses. J Exp Psychol Gen 121:480–506PubMedCrossRefGoogle Scholar
  38. Hajcak G, Moser JS, Yeung N, Simons RF (2005) On the ERN and the significance of errors. Psychophysiology 42:151–160PubMedCrossRefGoogle Scholar
  39. Han DD, Gu HH (2006) Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol 6:6PubMedCentralPubMedCrossRefGoogle Scholar
  40. Herrmann MJ, Rommler J, Ehlis AC, Heidrich A, Fallgatter AJ (2004) Source localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe). Brain Res Cogn Brain Res 20:294–299PubMedCrossRefGoogle Scholar
  41. Herrmann MJ, Mader K, Schreppel T, Jacob C, Heine M, Boreatti-Hummer A, Ehlis AC, Scheuerpflug P, Pauli P, Fallgatter AJ (2010) Neural correlates of performance monitoring in adult patients with attention deficit hyperactivity disorder (ADHD). World J Biol Psychiatry 11:457–464PubMedCrossRefGoogle Scholar
  42. Holmes AJ, Pizzagalli DA (2008) Spatiotemporal dynamics of error processing dysfunctions in major depressive disorder. Arch Gen Psychiatry 65:179–188PubMedCentralPubMedCrossRefGoogle Scholar
  43. Holmes AJ, Bogdan R, Pizzagalli DA (2010) Serotonin transporter genotype and action monitoring dysfunction: a possible substrate underlying increased vulnerability to depression. Neuropsychopharmacology 35:1186–1197PubMedCrossRefGoogle Scholar
  44. Holroyd CB, Coles MG (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709PubMedCrossRefGoogle Scholar
  45. Holroyd CB, Yeung N, Coles MG, Cohen JD (2005) A mechanism for error detection in speeded response time tasks. J Exp Psychol Gen 134:163–191PubMedCrossRefGoogle Scholar
  46. Jonkman LM, van Melis JJ, Kemner C, Markus CR (2007) Methylphenidate improves deficient error evaluation in children with ADHD: an event-related brain potential study. Biol Psychol 76:217–229PubMedCrossRefGoogle Scholar
  47. Kramer UM, Cunillera T, Camara E, Marco-Pallares J, Cucurell D, Nager W, Bauer P, Schule R, Schols L, Rodriguez-Fornells A, Munte TF (2007) The impact of catechol-O-methyltransferase and dopamine D4 receptor genotypes on neurophysiological markers of performance monitoring. J Neurosci 27:14190–14198PubMedCrossRefGoogle Scholar
  48. Ladouceur CD, Dahl RE, Carter CS (2007) Development of action monitoring through adolescence into adulthood: ERP and source localization. Dev Sci 10:874–891PubMedCrossRefGoogle Scholar
  49. Larson MJ, Baldwin SA, Good DA, Fair JE (2010) Temporal stability of the error-related negativity (ERN) and post-error positivity (Pe): the role of number of trials. Psychophysiology 47:1167–1171PubMedCrossRefGoogle Scholar
  50. Lee YS, Han DH, Lee JH, Choi TY (2010) The effects of methylphenidate on neural substrates associated with interference suppression in children with ADHD: a preliminary study using event related fMRI. Psychiatry Investig 7:49–54PubMedCentralPubMedCrossRefGoogle Scholar
  51. Maier ME, di Pellegrino G, Steinhauser M (2012) Enhanced error-related negativity on flanker errors: error expectancy or error significance? Psychophysiology 49:899–908PubMedCrossRefGoogle Scholar
  52. McLoughlin G, Albrecht B, Banaschewski T, Rothenberger A, Brandeis D, Asherson P, Kuntsi J (2009) Performance monitoring is altered in adult ADHD: a familial event-related potential investigation. Neuropsychologia 47:3134–3142PubMedCentralPubMedCrossRefGoogle Scholar
  53. Millan MJ, Newman-Tancredi A, Audinot V, Cussac D, Lejeune F, Nicolas JP, Coge F, Galizzi JP, Boutin JA, Rivet JM, Dekeyne A, Gobert A (2000) Agonist and antagonist actions of yohimbine as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors. Significance for the modulation of frontocortical monoaminergic transmission and depressive states. Synapse 35:79–95PubMedCrossRefGoogle Scholar
  54. Murphy PR, Robertson IH, Balsters JH, O'Connell RG (2011) Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. Psychophysiology 48:1532–1543PubMedCrossRefGoogle Scholar
  55. Murphy PR, Robertson IH, Allen D, Hester R, O'Connell RG (2012) An electrophysiological signal that precisely tracks the emergence of error awareness. Front Hum Neurosci 6:65PubMedCentralPubMedCrossRefGoogle Scholar
  56. Nieuwenhuis S, Ridderinkhof KR, Blom J, Band GP, Kok A (2001) Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task. Psychophysiology 38:752–760PubMedCrossRefGoogle Scholar
  57. Nieuwenhuis S, Aston-Jones G, Cohen JD (2005) Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol Bull 131:510–532PubMedCrossRefGoogle Scholar
  58. Norris H (1971) The action of sedatives on brain stem oculomotor systems in man. Neuropharmacology 10:181–191PubMedCrossRefGoogle Scholar
  59. O'Connell RG, Dockree PM, Bellgrove MA, Kelly SP, Hester R, Garavan H, Robertson IH, Foxe JJ (2007) The role of cingulate cortex in the detection of errors with and without awareness: a high-density electrical mapping study. Eur J Neurosci 25:2571–2579PubMedCrossRefGoogle Scholar
  60. O'Connell RG, Bellgrove MA, Dockree PM, Lau A, Hester R, Garavan H, Fitzgerald M, Foxe JJ, Robertson IH (2009) The neural correlates of deficient error awareness in attention-deficit hyperactivity disorder (ADHD). Neuropsychologia 47:1149–1159PubMedCrossRefGoogle Scholar
  61. Ortega JE, Fernandez-Pastor B, Callado LF, Meana JJ (2010) In vivo potentiation of reboxetine and citalopram effect on extracellular noradrenaline in rat brain by alpha2-adrenoceptor antagonism. Eur Neuropsychopharmacol 20:813–822PubMedCrossRefGoogle Scholar
  62. Overbeek TJM, Nieuwenhuis S, Ridderinkhof KR (2005) Dissociable components of error processing: on the functional significance of the Pe vis-à-vis the ERN/Ne. J Psychophysiol 19:319–329CrossRefGoogle Scholar
  63. Perez VB, Ford JM, Roach BJ, Woods SW, McGlashan TH, Srihari VH, Loewy RL, Vinogradov S, Mathalon DH (2012) Error monitoring dysfunction across the illness course of schizophrenia. J Abnorm Psychol 121:372–387PubMedCentralPubMedCrossRefGoogle Scholar
  64. Pontifex MB, Scudder MR, Brown ML, O'Leary KC, Wu CT, Themanson JR, Hillman CH (2010) On the number of trials necessary for stabilization of error-related brain activity across the life span. Psychophysiology 47:767–773PubMedGoogle Scholar
  65. Potts GF (2011) Impact of reward and punishment motivation on behavior monitoring as indexed by the error-related negativity. Int J Psychophysiol 81:324–331PubMedCentralPubMedCrossRefGoogle Scholar
  66. Rabbitt PM (1966) Errors and error correction in choice-response tasks. J Exp Psychol 71:264–272PubMedCrossRefGoogle Scholar
  67. Riba J, Rodriguez-Fornells A, Morte A, Munte TF, Barbanoj MJ (2005) Noradrenergic stimulation enhances human action monitoring. J Neurosci 25:4370–4374PubMedCrossRefGoogle Scholar
  68. Ridderinkhof KR, Ramautar JR, Wijnen JG (2009) To P(E) or not to P(E): a P3-like ERP component reflecting the processing of response errors. Psychophysiology 46:531–538PubMedCrossRefGoogle Scholar
  69. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(Suppl 20):22–33, quiz 34-57PubMedGoogle Scholar
  70. Shiels K, Hawk LW Jr (2010) Self-regulation in ADHD: the role of error processing. Clin Psychol Rev 30:951–961PubMedCentralPubMedCrossRefGoogle Scholar
  71. Steinhauser M, Yeung N (2010) Decision processes in human performance monitoring. J Neurosci 30:15643–15653PubMedCentralPubMedCrossRefGoogle Scholar
  72. Stemmer B, Segalowitz SJ, Dywan J, Panisset M, Melmed C (2007) The error negativity in nonmedicated and medicated patients with Parkinson's disease. Clin Neurophysiol 118:1223–1229PubMedCrossRefGoogle Scholar
  73. Szabo ST, Blier P (2001) Effect of the selective noradrenergic reuptake inhibitor reboxetine on the firing activity of noradrenaline and serotonin neurons. The Eur J Neurosci 13:2077–2087CrossRefGoogle Scholar
  74. Themanson JR, Rosen PJ, Pontifex MB, Hillman CH, McAuley E (2012) Alterations in error-related brain activity and post-error behavior over time. Brain Cogn 80:257–265PubMedCrossRefGoogle Scholar
  75. Thomas DN, Nutt DJ, Holman RB (1998) Sertraline, a selective serotonin reuptake inhibitor modulates extracellular noradrenaline in the rat frontal cortex. J Psychopharmacol 12:366–370PubMedCrossRefGoogle Scholar
  76. Tieges Z, Richard Ridderinkhof K, Snel J, Kok A (2004) Caffeine strengthens action monitoring: evidence from the error-related negativity. Brain Res Cogn Brain Res 21:87–93PubMedCrossRefGoogle Scholar
  77. Ullsperger M, Harsay HA, Wessel JR, Ridderinkhof KR (2010) Conscious perception of errors and its relation to the anterior insula. Brain Struct Funct 214:629–643PubMedCentralPubMedCrossRefGoogle Scholar
  78. Varnas K, Halldin C, Hall H (2004) Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum Brain Mapp 22:246–260PubMedCrossRefGoogle Scholar
  79. Vidal F, Hasbroucq T, Grapperon J, Bonnet M (2000) Is the ‘error negativity’ specific to errors? Biol Psychol 51:109–128PubMedCrossRefGoogle Scholar
  80. Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 21:RC121PubMedGoogle Scholar
  81. Volkow ND, Fowler JS, Wang G, Ding Y, Gatley SJ (2002) Mechanism of action of methylphenidate: insights from PET imaging studies. J Atten Disord 6(Suppl 1):S31–S43PubMedGoogle Scholar
  82. Wardle MC, Yang A, de Wit H (2012) Effect of d-amphetamine on post-error slowing in healthy volunteers. Psychopharmacology (Berl) 220:109–115CrossRefGoogle Scholar
  83. Wessel JR (2012) Error awareness and the error-related negativity: evaluating the first decade of evidence. Front Hum Neurosci 6:88PubMedCentralPubMedCrossRefGoogle Scholar
  84. Wessel JR, Danielmeier C, Morton JB, Ullsperger M (2012) Surprise and error: common neuronal architecture for the processing of errors and novelty. J Neurosci 32:7528–7537PubMedCrossRefGoogle Scholar
  85. Wiersema JR, van der Meere JJ, Roeyers H (2009) ERP correlates of error monitoring in adult ADHD. J Neural Transm 116:371–379PubMedCrossRefGoogle Scholar
  86. Willemssen R, Muller T, Schwarz M, Hohnsbein J, Falkenstein M (2008) Error processing in patients with Parkinson's disease: the influence of medication state. J Neural Transm 115:461–468PubMedCrossRefGoogle Scholar
  87. Yeung N, Botvinick MM, Cohen JD (2004) The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol Rev 111:931–959PubMedCrossRefGoogle Scholar
  88. Zirnheld PJ, Carroll CA, Kieffaber PD, O'Donnell BF, Shekhar A, Hetrick WP (2004) Haloperidol impairs learning and error-related negativity in humans. J Cogn Neurosci 16:1098–1112PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jessica J. M. Barnes
    • 1
  • Redmond G. O’Connell
    • 2
  • L. Sanjay Nandam
    • 1
  • Angela J. Dean
    • 1
  • Mark A. Bellgrove
    • 1
    • 3
  1. 1.The University of QueenslandQueensland Brain InstituteBrisbaneAustralia
  2. 2.Trinity College Institute of NeuroscienceDublinIreland
  3. 3.School of Psychology and PsychiatryMonash UniversityMelbourneAustralia

Personalised recommendations