, Volume 230, Issue 4, pp 653–662 | Cite as

Association of abstinence-induced alterations in working memory function and COMT genotype in smokers

  • Rebecca L. Ashare
  • Jeffrey N. Valdez
  • Kosha Ruparel
  • Benjamin Albelda
  • Ryan D. Hopson
  • John R. Keefe
  • James Loughead
  • Caryn Lerman
Original Investigation



The common methionine (met) for valine (val) at codon 158 (val158met) polymorphism in the catechol-O-methyltransferase (COMT) gene has been associated with nicotine dependence, alterations in executive cognitive function, and abstinence-induced working memory deficits in smokers.


We sought to replicate the association of the COMT val allele with abstinence-induced alterations in working memory-related activity in task-positive (executive control) and task-negative (default mode network) regions.


Forty smokers (20 val/val and 20 met/met) performed an N-back task while undergoing blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) on two separate occasions: following 72 h of confirmed abstinence and during smoking as usual. An independent sample of 48 smokers who completed the identical N-back task during fMRI in smoking vs. abstinence for another study was used as a validation sample.


Contrary to expectations, genotype by session interactions on BOLD signal in executive control regions (dorsolateral prefrontal cortex and dorsal cingulate/medial prefrontal cortex) revealed significant abstinence-induced reductions in the met/met group, but not the val/val group. Results also revealed that val/val smokers may exhibit less suppression of activation in task-negative regions such as the posterior cingulate cortex during abstinence (vs. smoking). These patterns were confirmed in the validation sample and in the whole-brain analysis, though the regions differed from the a priori regions of interest (ROIs) (e.g., precuneus, insula).


The COMT val158met polymorphism was associated with abstinence-related working memory deficits in two independent samples of smokers. However, inconsistencies compared to prior findings and across methods (ROI vs. whole-brain analysis) highlight the challenges inherent in reproducing results of imaging genetic studies in addiction.


Smoking Nicotine COMT Genetic fMRI Cognition Working memory 



This research was supported by grants R03 DA027438 (CL) and R01 DA026849 (CL) and pilot funding from UL1 RR024134 (RLA). The NIH had no further role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the paper for publication.

Supplementary material

213_2013_3197_MOESM1_ESM.doc (366 kb)
ESM 1(DOC 365 kb)


  1. Anticevic A, Cole MW, Murray JD, Corlett PR, Wang XJ, Krystal JH (2012) The role of default network deactivation in cognition and disease. Trends Cogn Sci 16:584–592PubMedCrossRefGoogle Scholar
  2. Ashare RL, Hawk LW Jr (2012) Effects of smoking abstinence on impulsive behavior among smokers high and low in ADHD-like symptoms. Psychopharmacology (Berl) 219:537–547CrossRefGoogle Scholar
  3. Barnett JH, Scoriels L, Munafo MR (2008) Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol Psychiatry 64:137–144PubMedCrossRefGoogle Scholar
  4. Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152PubMedCrossRefGoogle Scholar
  5. Berryhill ME, Wiener M, Stephens JA, Lohoff FW, Coslett HB (2013) COMT and ANKK1-Taq-Ia genetic polymorphisms influence visual working memory. PLoS One 8:e55862PubMedCrossRefGoogle Scholar
  6. Bertolino A, Blasi G, Latorre V, Rubino V, Rampino A, Sinibaldi L, Caforio G, Petruzzella V, Pizzuti A, Scarabino T, Nardini M, Weinberger DR, Dallapiccola B (2006) Additive effects of genetic variation in dopamine regulating genes on working memory cortical activity in human brain. J Neurosci 26:3918–3922PubMedCrossRefGoogle Scholar
  7. Brady KT, Gray KM, Tolliver BK (2011) Cognitive enhancers in the treatment of substance use disorders: clinical evidence. Pharmacol Biochem Behav 99:285–294PubMedCrossRefGoogle Scholar
  8. Brody AL, Mandelkern MA, Olmstead RE, Scheibal D, Hahn E, Shiraga S, Zamora-Paja E, Farahi J, Saxena S, London ED, McCracken JT (2006) Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. Arch Gen Psychiatry 63:808–816PubMedCrossRefGoogle Scholar
  9. Caldu X, Vendrell P, Bartres-Faz D, Clemente I, Bargallo N, Jurado MA, Serra-Grabulosa JM, Junque C (2007) Impact of the COMT Val108/158 Met and DAT genotypes on prefrontal function in healthy subjects. NeuroImage 37:1437–1444PubMedCrossRefGoogle Scholar
  10. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, Kolachana BS, Hyde TM, Herman MM, Apud J, Egan MF, Kleinman JE, Weinberger DR (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75:807–821PubMedCrossRefGoogle Scholar
  11. Cole DM, Beckmann CF, Long CJ, Matthews PM, Durcan MJ, Beaver JD (2010) Nicotine replacement in abstinent smokers improves cognitive withdrawal symptoms with modulation of resting brain network dynamics. NeuroImage 52:590–599PubMedCrossRefGoogle Scholar
  12. Colilla S, Lerman C, Shields PG, Jepson C, Rukstalis M, Berlin J, DeMichele A, Bunin G, Strom BL, Rebbeck TR (2005) Association of catechol-O-methyltransferase with smoking cessation in two independent studies of women. Pharmacogenet Genomics 15:393PubMedCrossRefGoogle Scholar
  13. Cox LS, Tiffany ST, Christen AG (2001) Evaluation of the brief Questionnaire of Smoking Urges (QSU-brief) in laboratory and clinical settings. Nicotine Tob Res 3:7–16PubMedCrossRefGoogle Scholar
  14. Culhane MA, Schoenfeld DA, Barr RS, Cather C, Deckersbach T, Freudenreich O, Goff DC, Rigotti NA, Evins EA (2008) Predictors of early abstinence in smokers with schizophrenia. J Clin Psychiatry 69(11):1743–1750PubMedCrossRefGoogle Scholar
  15. Dang LC, O'Neil JP, Jagust WJ (2013) Genetic effects on behavior are mediated by neurotransmitters and large-scale neural networks. NeuroImage 66C:203–214CrossRefGoogle Scholar
  16. Davis JA, James JR, Siegel SJ, Gould TJ (2005) Withdrawal from chronic nicotine administration impairs contextual fear conditioning in C57BL/6 mice. J Neurosci 25:8708–8713PubMedCrossRefGoogle Scholar
  17. Dolan SL, Sacco KA, Termine A, Seyal AA, Dudas MM, Vessicchio JC, Wexler BE, George TP (2004) Neuropsychological deficits are associated with smoking cessation treatment failure in patients with schizophrenia. Schizophr Res 70:263–275PubMedCrossRefGoogle Scholar
  18. Falcone M, Wileyto EP, Ruparel K, Gerraty RT, Laprate L, Detre JA, Gur R, Loughead J, Lerman C (2013) Age-related differences in working memory deficits during nicotine withdrawal. Addict Biol. doi:10.1111/adb.12051 PubMedGoogle Scholar
  19. Goldberg TE, Weinberger DR (2004) Genes and the parsing of cognitive processes. Trends Cogn Sci 8:325–335PubMedCrossRefGoogle Scholar
  20. Harrison EL, Coppola S, McKee SA (2009) Nicotine deprivation and trait impulsivity affect smokers' performance on cognitive tasks of inhibition and attention. Exp Clin Psychopharmacol 17:91–98PubMedCrossRefGoogle Scholar
  21. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO (1991) The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom tolerance questionnaire. Br J Addict 86:1119–1127PubMedCrossRefGoogle Scholar
  22. Hughes J, Hatsukami D, Pickens R, Krahn D, Malin S, Luknic A (1984) Effect of nicotine on the tobacco withdrawal syndrome. Psychopharmacology (Berl) 83:82–87CrossRefGoogle Scholar
  23. Hughes JR (2007) Effects of abstinence from tobacco: valid symptoms and time course. Nicotine Tob Res 9:315–327PubMedCrossRefGoogle Scholar
  24. Jacobsen LK, Krystal JH, Mencl WE, Westerveld M, Frost SJ, Pugh KR (2005) Effects of smoking and smoking abstinence on cognition in adolescent tobacco smokers. Biol Psychiatry 57:56–66PubMedCrossRefGoogle Scholar
  25. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841PubMedCrossRefGoogle Scholar
  26. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156PubMedCrossRefGoogle Scholar
  27. Johnstone EC, Elliot KM, David SP, Murphy MF, Walton RT, Munafo MR (2007) Association of COMT Val108/158Met genotype with smoking cessation in a nicotine replacement therapy randomized trial. Cancer Epidemiol Biomarkers Prev 16:1065–1069PubMedCrossRefGoogle Scholar
  28. Krishnan-Sarin S, Reynolds B, Duhig AM, Smith A, Liss T, McFetridge A, Cavallo DA, Carroll KM, Potenza MN (2007) Behavioral impulsivity predicts treatment outcome in a smoking cessation program for adolescent smokers. Drug Alcohol Depend 88:79–82PubMedCrossRefGoogle Scholar
  29. Lerman C, LeSage MG, Perkins KA, O'Malley SS, Siegel SJ, Benowitz NL, Corrigall WA (2007) Translational research in medication development for nicotine dependence. Nat Rev Drug Discov 6:746–762PubMedCrossRefGoogle Scholar
  30. Lerman, C., Perkins, K.A., Gould, T., 2008. Nicotine dependence endophenotypes in chronic smokers. National Cancer Institute. Phenotypes and endophenotypes: foundations for genetic studies of nicotine use and dependence. Tobacco Control Monograph No. 20. Bethesda, MD: U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute. NIH Publication No. 08–6366Google Scholar
  31. Liu ME, Hong CJ, Liou YJ, Tsai YL, Hsieh CH, Tsai SJ (2008) Association study of a functional catechol-O-methyltransferase polymorphism and executive function in elderly males without dementia. Neurosci Lett 436:193–195PubMedCrossRefGoogle Scholar
  32. Loughead J, Ray R, Wileyto EP, Ruparel K, Sanborn P, Siegel S, Gur RC, Lerman C (2010) Effects of the alpha4beta2 partial agonist varenicline on brain activity and working memory in abstinent smokers. Biol Psychiatry 67:715–721PubMedCrossRefGoogle Scholar
  33. Loughead J, Wileyto EP, Valdez JN, Sanborn P, Tang K, Strasser AA, Ruparel K, Ray R, Gur RC, Lerman C (2009) Effect of abstinence challenge on brain function and cognition in smokers differs by COMT genotype. Mol Psychiatry 14:820–826PubMedCrossRefGoogle Scholar
  34. Mendrek A, Monterosso J, Simon SL, Jarvik M, Brody A, Olmstead R, Domier CP, Cohen MS, Ernst M, London ED (2006) Working memory in cigarette smokers: comparison to non-smokers and effects of abstinence. Addict Behav 31:833–844PubMedCrossRefGoogle Scholar
  35. Mier D, Kirsch P, Meyer-Lindenberg A (2010) Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Mol Psychiatry 15:918–927PubMedCrossRefGoogle Scholar
  36. Munafo MR, Johnstone EC, Guo B, Murphy MF, Aveyard P (2008) Association of COMT Val108/158Met genotype with smoking cessation. Pharmacogenet Genomics 18:121–128PubMedCrossRefGoogle Scholar
  37. Mutschler J, Abbruzzese E, von der Goltz C, Dinter C, Mobascher A, Thiele H, Diaz-Lacava A, Dahmen N, Gallinat J, Majic T, Petrovsky N, Thuerauf N, Kornhuber J, Grunder G, Rademacher L, Brinkmeyer J, Wienker T, Wagner M, Winterer G, Kiefer F (2013) Lack of association of a functional catechol-O-methyltransferase gene polymorphism with risk of tobacco smoking: results from a multicenter case–control study. Nicotine Tob Res 15(7):1322–7PubMedCrossRefGoogle Scholar
  38. Myers CS, Richard CT, Etter JR, Moolchan ET, Heishman SJ (2005) Nicotine nasal spray dose-dependently enhanced sustained attention as assessed by the continuous performance task. Society for Research on Nicotine and Tobacco, PragueGoogle Scholar
  39. Myers CS, Taylor RC, Moolchan ET, Heishman SJ (2008) Dose-related enhancement of mood and cognition in smokers administered nicotine nasal spray. Neuropsychopharmacology 33:588–598PubMedCrossRefGoogle Scholar
  40. Nedic G, Nikolac M, Borovecki F, Hajnsek S, Muck-Seler D, Pivac N (2010) Association study of a functional catechol-O-methyltransferase polymorphism and smoking in healthy Caucasian subjects. Neurosci Lett 473:216–219PubMedCrossRefGoogle Scholar
  41. Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8:1445–1449PubMedCrossRefGoogle Scholar
  42. Patterson F, Jepson C, Loughead J, Perkins K, Strasser A, Siegel S, Frey J, Gur R, Lerman C (2010) Working memory deficits predict short-term smoking resumption following brief abstinence. Drug Alcohol Depend 106:61–64PubMedCrossRefGoogle Scholar
  43. Patterson F, Jepson C, Strasser AA, Loughead J, Perkins KA, Gur RC, Frey JM, Siegel S, Lerman C (2009) Varenicline improves mood and cognition during smoking abstinence. Biol Psychiatry 65:144–149PubMedCrossRefGoogle Scholar
  44. Pomarol-Clotet E, Fatjo-Vilas M, McKenna PJ, Monte GC, Sarro S, Ortiz-Gil J, Aguirre C, Gomar JJ, Guerrero A, Landin R, Capdevila A, Fananas L, Salvador R (2010) COMT Val158Met polymorphism in relation to activation and de-activation in the prefrontal cortex: a study in patients with schizophrenia and healthy subjects. NeuroImage 53:899–907PubMedCrossRefGoogle Scholar
  45. Portugal GS, Gould TJ (2007) Bupropion dose-dependently reverses nicotine withdrawal deficits in contextual fear conditioning. Pharmacol Biochem Behav 88:179–187PubMedCrossRefGoogle Scholar
  46. Ragland JD, Turetsky BI, Gur RC, Gunning-Dixon F, Turner T, Schroeder L, Chan R, Gur RE (2002) Working memory for complex figures: an fMRI comparison of letter and fractal n-back tasks. Neuropsychology 16:370PubMedCrossRefGoogle Scholar
  47. Raybuck JD, Portugal GS, Lerman C, Gould TJ (2008) Varenicline ameliorates nicotine withdrawal-induced learning deficits in C57BL/6 mice. Behav Neurosci 122:1166–1171PubMedCrossRefGoogle Scholar
  48. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry 59(Suppl 20):22–33, quiz 34–57PubMedGoogle Scholar
  49. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155PubMedCrossRefGoogle Scholar
  50. Sofuoglu M (2010) Cognitive enhancement as a pharmacotherapy target for stimulant addiction. Addiction 105:38–48PubMedCrossRefGoogle Scholar
  51. Stokes PR, Rhodes RA, Grasby PM, Mehta MA (2011) The effects of the COMT Val108/158Met polymorphism on BOLD activation during working memory, planning, and response inhibition: a role for the posterior cingulate cortex? Neuropsychopharmacology 36:763–771PubMedCrossRefGoogle Scholar
  52. Sutherland MT, McHugh MJ, Pariyadath V, Stein EA (2012) Resting state functional connectivity in addiction: lessons learned and a road ahead. NeuroImage 62:2281–2295PubMedCrossRefGoogle Scholar
  53. Tammimaki AE, Mannisto PT (2010) Are genetic variants of COMT associated with addiction? Pharmacogenet Genomics 20:717–741PubMedGoogle Scholar
  54. Tan HY, Chen Q, Goldberg TE, Mattay VS, Meyer-Lindenberg A, Weinberger DR, Callicott JH (2007) Catechol-O-methyltransferase Val158Met modulation of prefrontal-parietal-striatal brain systems during arithmetic and temporal transformations in working memory. J Neurosci 27:13393–13401PubMedCrossRefGoogle Scholar
  55. Tost H, Bilek E, Meyer-Lindenberg A (2012) Brain connectivity in psychiatric imaging genetics. NeuroImage 62(4):2250–2260Google Scholar
  56. Tunbridge EM (2010) The catechol-O-methyltransferase gene: its regulation and polymorphisms. Int Rev Neurobiol 95:7–27PubMedCrossRefGoogle Scholar
  57. Tunbridge EM, Harrison PJ (2011) Importance of the COMT gene for sex differences in brain function and predisposition to psychiatric disorders. Curr Top Behav Neurosci 8:119–140PubMedCrossRefGoogle Scholar
  58. Tunbridge EM, Harrison PJ, Weinberger DR (2006) Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 60:141–151PubMedCrossRefGoogle Scholar
  59. Ward MM, Swan GE, Jack LM (2001) Self-reported abstinence effects in the first month after smoking cessation. Addict Behav 26:311–327PubMedCrossRefGoogle Scholar
  60. Wardle MC, de Wit H, Penton-Voak I, Lewis G, Munafo MR (2013) Lack of association between COMT and working memory in a population-based cohort of healthy young adults. Neuropsychopharmacology 38(7):1253–63PubMedCrossRefGoogle Scholar
  61. Winterer G, Goldman D (2003) Genetics of human prefrontal function. Brain research 43:134–163PubMedCrossRefGoogle Scholar
  62. Winterer G, Musso F, Vucurevic G, Stoeter P, Konrad A, Seker B, Gallinat J, Dahmen N, Weinberger DR (2006) COMT genotype predicts BOLD signal and noise characteristics in prefrontal circuits. NeuroImage 32:1722–1732PubMedCrossRefGoogle Scholar
  63. Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27:683–690PubMedCrossRefGoogle Scholar
  64. Woolrich MW, Ripley BD, Brady M, Smith SM (2001) Temporal autocorrelation in univariate linear modeling of FMRI data. NeuroImage 14:1370–1386PubMedCrossRefGoogle Scholar
  65. Yavich L, Forsberg MM, Karayiorgou M, Gogos JA, Mannisto PT (2007) Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. J Neurosci 27:10196–10209PubMedCrossRefGoogle Scholar
  66. Zachary RS (2000) Shipley Institute of Living Scale: revised manual. Western Psychological Services, Los AngelesGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rebecca L. Ashare
    • 1
  • Jeffrey N. Valdez
    • 2
  • Kosha Ruparel
    • 2
  • Benjamin Albelda
    • 1
  • Ryan D. Hopson
    • 2
  • John R. Keefe
    • 2
  • James Loughead
    • 2
  • Caryn Lerman
    • 1
  1. 1.Center for Interdisciplinary Research on Nicotine Addiction, Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Brain Behavior Laboratory, Neuropsychiatry DepartmentHospital of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations