Advertisement

Psychopharmacology

, Volume 229, Issue 2, pp 367–375 | Cite as

Trehalose induced antidepressant-like effects and autophagy enhancement in mice

  • N. Z. Kara
  • L. Toker
  • G. Agam
  • G. W. Anderson
  • R. H. Belmaker
  • H. Einat
Original Investigation

Abstract

Rationale

The disaccharide trehalose protects cells from hypoxic and anoxic injury and suppresses protein aggregation. In vivo studies with trehalose show cellular and behavioral beneficial effects in animal models of neurodegenerative diseases. Moreover, trehalose was shown to enhance autophagy, a process that had been recently suggested to be involved in the therapeutic action of antidepressant and mood-stabilizing drugs.

Objective

The present study was therefore designed to explore antidepressant and mood-stabilizing activity of trehalose in animal models for depression and mania.

Methods

Trehalose 1 or 2 % was administered for 3 weeks as a drinking solution to Black Swiss mice (a model of manic-like behaviors) or 2 % to ICR mice and their behavior evaluated in a number of tests related to depression or mania. The effects of trehalose were compared with similar chronic administration of the disaccharide maltose as well as with a vehicle (water) control.

Results

Chronic administration of trehalose resulted in a reduction of frontal cortex p62/beclin-1 ratio suggesting enhancement of autophagy. Trehalose had no mood-stabilizing effects on manic-like behavior in Black Swiss mice but instead augmented amphetamine-induced hyperactivity, an effect similar to antidepressant drugs. In ICR mice, trehalose did not alter spontaneous activity or amphetamine-induced hyperactivity but in two separate experiments had a significant effect to reduce immobility in the forced swim test, a standard screening test for antidepressant-like effects.

Conclusions

The results suggest that trehalose may have antidepressant-like properties. It is hypothesized that these behavioral changes could be related to trehalose effects to enhance autophagy.

Keywords

Depression Bipolar disorder Animal models Cellular plasticity Autophagy 

Notes

Acknowledgments

The study was partially supported by a grant from the United States–Israel Binational Science Foundation to Haim Einat and Grant W Anderson (grant # 2011313). The authors would like to thank the Endowment for Medical Research (Huston, TX) for their generous donation of trehalose. We would also like to thank Dr. Shlomit Flaisher-Grinberg, Ms. Sara Schuster, Ms. Keren Raphael, and Mr. Jesse Juetten for their technical assistance.

Conflict of interest

The authors declare no conflict of interest.

References

  1. Aguib Y, Heiseke A, Gilch S, Riemer C, Baier M et al (2009) Autophagy induction by trehalose counteracts cellular prion infection. Autophagy 5(3):361–369PubMedCrossRefGoogle Scholar
  2. Arora A, Ha C, Park CB (2004) Inhibition of insulin amyloid formation by small stress molecules. FEBS Lett 564(1–2):121–125PubMedCrossRefGoogle Scholar
  3. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF et al (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475(7354):91–95PubMedCrossRefGoogle Scholar
  4. Bachmann RF, Schloesser RJ, Gould TD, Manji HK (2005) Mood stabilizers target cellular plasticity and resilience cascades: implications for the development of novel therapeutics. Mol Neurobiol 32(2):173–202PubMedCrossRefGoogle Scholar
  5. Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ et al (2006) Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 6(11):3414–3425PubMedCrossRefGoogle Scholar
  6. Behan AT, Byrne C, Dunn MJ, Cagney G, Cotter DR (2009) Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in lamp, stxbp1 and basp1 protein expression. Mol Psychiatry 14(6):601–613PubMedCrossRefGoogle Scholar
  7. Bennett GS, Hollander BA, Laskowska D, DiLullo C (1991) Rapid degradation of newly synthesized tubulin in lithium-treated sensory neurons. J Neurochem 57(1):130–139PubMedCrossRefGoogle Scholar
  8. Calabrese F, Molteni R, Racagni G, Riva MA (2009) Neuronal plasticity: a link between stress and mood disorders. Psychoneuroendocrinology 34(Suppl 1):S208–216, EpubPubMedCrossRefGoogle Scholar
  9. Cambiaghi M, Cursi M, Magri L, Castoldi V, Comi G et al (2012) Behavioural and eeg effects of chronic rapamycin treatment in a mouse model of tuberous sclerosis complex. Neuropharmacology 67C:1–7. doi: 10.1016/j.neuropharm.2012.1011.1003 Google Scholar
  10. Cannell GR, Bailey MJ, Dickinson RG (2002) Inhibition of tubulin assembly and covalent binding to microtubular protein by valproic acid glucuronide in vitro. Life Sci 71(22):2633–2643PubMedCrossRefGoogle Scholar
  11. Chen Q, Haddad GG (2004) Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammals. J Exp Biol 207(Pt 18):3125–3129PubMedCrossRefGoogle Scholar
  12. Cleary C, Linde JA, Hiscock KM, Hadas I, Belmaker RH et al (2008) Antidepressive-like effects of rapamycin in animal models: implications for mtor inhibition as a new target for treatment of affective disorders. Brain Res Bull 76(5):469–473PubMedCrossRefGoogle Scholar
  13. Cloonan SM, Williams DC (2011) The antidepressants maprotiline and fluoxetine induce type ii autophagic cell death in drug-resistant burkitt's lymphoma. Int J Cancer 128(7):1712–1723PubMedCrossRefGoogle Scholar
  14. Costain WJ, Haqqani AS, Rasquinha I, Giguere MS and Slinn J (2012) Cerebral ischemia induced proteomic alterations: consequences for the synapse and organelles. Advances in the Preclinical Study of Ischemic Stroke. M BalestrinoGoogle Scholar
  15. Cryan JF, O'Leary OF (2010) Neuroscience. A glutamate pathway to faster-acting antidepressants? Science 329(5994):913–914PubMedCrossRefGoogle Scholar
  16. de Felipe MC, Jimenez I, Castro A, Fuentes JA (1989) Antidepressant action of imipramine and iprindole in mice is enhanced by inhibitors of enkephalin-degrading peptidases. Eur J Pharmacol 159(2):175–180PubMedCrossRefGoogle Scholar
  17. Dengjel J, Hoyer-Hansen M, Nielsen MO, Eisenberg T, Harder LM et al (2012) Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens. Mol Cell Proteomics 11(3):M111–014035PubMedGoogle Scholar
  18. Dwyer JM, Lepack AE, Duman RS (2011) Mtor activation is required for the antidepressant effects of mglur2/3 blockade. Int J Neuropsychopharmacol 24:1–6Google Scholar
  19. Dziedzicka-Wasylewska M, Faron-Gorecka A, Rogoz Z, Solich J (2004) The effect of combined treatment with imipramine and amantadine on the behavioral reactivity of central alpha1-adrenergic system in rats. Behav Pharmacol 15(2):159–165PubMedCrossRefGoogle Scholar
  20. Einat H, Manji HK (2006) Cellular plasticity cascades: gene to behavior pathways in animal models of bipolar disorder. Biol Psychiatry 59(12):1960–1971CrossRefGoogle Scholar
  21. Flaisher-Grinberg S, Einat H (2009) A possible utilization of the mice forced swim test for modeling manic-like increase in vigor and goal-directed behavior. J Pharmacol Toxicol Methods 59(3):141–145PubMedCrossRefGoogle Scholar
  22. Flaisher-Grinberg S, Einat H (2010) Strain specific battery of tests for separate behavioral domains of mania. Front Psychiatry 1(Article 10):1–10Google Scholar
  23. Flaisher-Grinberg S, Overgaard S, Einat H (2009) Attenuation of high sweet solution preference by mood stabilizers: a possible mouse model for the increased reward-seeking domain of mania. J Neurosci Methods 177(1):44–50PubMedCrossRefGoogle Scholar
  24. Garcia LS, Comim CM, Valvassori SS, Reus GZ, Barbosa LM et al (2008) Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases bdnf levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 32(1):140–144, Epub 2007PubMedCrossRefGoogle Scholar
  25. Gould TD, Einat H, O'Donnell KC, Picchini AM, Schloesser RJ et al (2007a) Beta-catenin overexpression in the mouse brain phenocopies lithium-sensitive behaviors. Neuropsychopharmacology 32(10):2173–2183PubMedCrossRefGoogle Scholar
  26. Gould TD, O'Donnell KC, Picchini AM, Manji HK (2007b) Strain differences in lithium attenuation of d-amphetamine-induced hyperlocomotion: a mouse model for the genetics of clinical response to lithium. Neuropsychopharmacology 32(6):1321–1333PubMedCrossRefGoogle Scholar
  27. Gould TD, Picchini AM, Einat H, Manji HK (2006) Targeting glycogen synthase kinase-3 in the cns: implications for the development of new treatments for mood disorders. Curr Drug Targets 7(11):1399–1409PubMedCrossRefGoogle Scholar
  28. Hannah-Poquette C, Anderson GW, Flaisher-Grinberg S, Wang J, Meinerding TM et al (2011) Modeling mania: further validation for black swiss mice as model animals. Behav Brain Res 223(1):222–226PubMedCrossRefGoogle Scholar
  29. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93PubMedCrossRefGoogle Scholar
  30. Higashiyama T (2002) Novel functions and applications of trehalose. Pure Appl Chem 74(7):1263–1269CrossRefGoogle Scholar
  31. Hiscock KM, Linde JA and Einat H (2007). Black swiss mice as a new animal model for mania: a preliminary study. J Med Biol Sci 1(2)Google Scholar
  32. Kalinichev M, Dawson LA (2011) Evidence for antimanic efficacy of glycogen synthase kinase-3 (gsk-3) inhibitors in a strain specific model of acute mania. Int J Neuropsychopharmacol 6:1–17Google Scholar
  33. Kampov-Polevoy AB, Garbutt JC, Janowsky DS (1999) Association between preference for sweets and excessive alcohol intake: a review of animal and human studies. Alcohol Alcohol 34(3):386–395PubMedCrossRefGoogle Scholar
  34. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4(2):151–175PubMedGoogle Scholar
  35. Lang UE, Heger J, Willbring M, Domula M, Matschke K et al (2009) Immunosuppression using the mammalian target of rapamycin (mtor) inhibitor everolimus: pilot study shows significant cognitive and affective improvement. Transplant Proc 41(10):4285–4288PubMedCrossRefGoogle Scholar
  36. Leliveld SR, Bader V, Hendriks P, Prikulis I, Sajnani G et al (2008) Insolubility of disrupted-in-schizophrenia 1 disrupts oligomer-dependent interactions with nuclear distribution element 1 and is associated with sporadic mental disease. J Neurosci 28(15):3839–3845PubMedCrossRefGoogle Scholar
  37. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM et al (2010) Mtor-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964PubMedCrossRefGoogle Scholar
  38. Maj J (1984) Central effects following repeated treatment with antidepressant drugs. Pol J Pharmacol Pharm 36(2–3):87–99PubMedGoogle Scholar
  39. Maj J, Wedzony K (1985) Repeated treatment with imipramine or amitriptyline increases the locomotor response of rats to (+)-amphetamine given into the nucleus accumbens. J Pharm Pharmacol 37(5):362–364PubMedCrossRefGoogle Scholar
  40. Piazza PV, Deminiere JM, le Moal M, Simon H (1990) Stress- and pharmacologically-induced behavioral sensitization increases vulnerability to acquisition of amphetamine self-administration. Brain Res 514(1):22–26PubMedCrossRefGoogle Scholar
  41. Porsolt RD, Anton G, Blavet N, Jalfre M (1978a) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47(4):379–391PubMedCrossRefGoogle Scholar
  42. Porsolt RD, Bertin A, Jalfre M (1978b) “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol 51(3):291–294PubMedCrossRefGoogle Scholar
  43. Racagni G, Popoli M (2008) Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues Clin Neurosci 10(4):385–400PubMedGoogle Scholar
  44. Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396(2):157–198PubMedCrossRefGoogle Scholar
  45. Rodriguez-Navarro JA, Rodriguez L, Casarejos MJ, Solano RM, Gomez A et al (2010) Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol 39(3):423–438Google Scholar
  46. Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A et al (2007) Small molecules enhance autophagy and reduce toxicity in huntington's disease models. Nat Chem Biol 3(6):331–338PubMedCrossRefGoogle Scholar
  47. Sarkar S, Rubinsztein DC (2006) Inositol and ip3 levels regulate autophagy: biology and therapeutic speculations. Autophagy 2(2):132–134PubMedGoogle Scholar
  48. Shamir A, Elhadad N, Belmaker RH, Agam G (2005) Interaction of calbindin d28k and inositol monophosphatase in human postmortem cortex: possible implications for bipolar disorder. Bipolar Disord 7(1):42–48PubMedCrossRefGoogle Scholar
  49. Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1(5):639–648PubMedCrossRefGoogle Scholar
  50. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR et al (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of huntington disease. Nat Med 10(2):148–154, Epub 2004PubMedCrossRefGoogle Scholar
  51. Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296(5575):1991–1995PubMedCrossRefGoogle Scholar
  52. Tottori K, Miwa T, Uwahodo Y, Yamada S, Nakai M et al (2001) Antidepressant-like responses to the combined sigma and 5-ht1a receptor agonist opc-14523. Neuropharmacology 41(8):976–988PubMedCrossRefGoogle Scholar
  53. Vezina P, Giovino AA, Wise RA, Stewart J (1989) Environment-specific cross-sensitization between the locomotor activating effects of morphine and amphetamine. Pharmacol Biochem Behav 32(2):581–584PubMedCrossRefGoogle Scholar
  54. Wang J, Flaisher-Grinberg S, Li S, Liu H, Sun L et al (2010) Antidepressant-like effects of the active acidic polysaccharide portion of ginseng in mice. J Ethnopharmacol 132(1):65–69PubMedCrossRefGoogle Scholar
  55. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl) 93(3):358–364CrossRefGoogle Scholar
  56. Yang CR, Yu RK (2009) Intracerebral transplantation of neural stem cells combined with trehalose ingestion alleviates pathology in a mouse model of huntington's disease. J Neurosci Res 87(1):26–33PubMedCrossRefGoogle Scholar
  57. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R et al (2006) A randomized trial of an n-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8):856–864PubMedCrossRefGoogle Scholar
  58. Zschocke J, Zimmermann N, Berning B, Ganal V, Holsboer F, et al (2011) Antidepressant drugs diversely affect autophagy pathways in astrocytes and neurons-dissociation from cholesterol homeostasis. Neuropsychopharmacology 2011: 20Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • N. Z. Kara
    • 1
    • 2
  • L. Toker
    • 1
    • 3
  • G. Agam
    • 1
    • 3
  • G. W. Anderson
    • 4
  • R. H. Belmaker
    • 3
  • H. Einat
    • 1
    • 2
    • 4
  1. 1.Department of Clinical Biochemistry and Pharmacology, Faculty of Health SciencesBen-Gurion University of the NegevBeershebaIsrael
  2. 2.School of Behavioral SciencesTel Aviv-Yaffo Academic CollegeTel AvivIsrael
  3. 3.Psychiatry Research Unit, Faculty of Health SciencesBen-Gurion University of the Negev, and Mental Health CenterBeershebaIsrael
  4. 4.College of PharmacyUniversity of MinnesotaDuluthUSA

Personalised recommendations