Advertisement

Psychopharmacology

, Volume 229, Issue 2, pp 345–355 | Cite as

Greater risk sensitivity of dorsolateral prefrontal cortex in young smokers than in nonsmokers

  • Adriana Galván
  • Tom Schonberg
  • Jeanette Mumford
  • Milky Kohno
  • Russell A. Poldrack
  • Edythe D. London
Original Investigation

Abstract

Rationale

Despite a national reduction in the prevalence of cigarette smoking, ~19 % of the adult US population persists in this behavior, with the highest prevalence among 18–25-year-olds. Given that the choice to smoke imposes a known health risk, clarification of brain function related to decision-making, particularly involving risk-taking, in smokers may inform prevention and smoking cessation strategies.

Objectives

This study aimed to compare brain function related to decision-making in young smokers and nonsmokers.

Methods

The Balloon Analogue Risk Task (BART) is a computerized risky decision-making task in which participants pump virtual balloons, each pump associated with an incremental increase in potential payoff on a given trial but also with greater risk of balloon explosion and loss of payoff. We used this task to compare brain activation associated with risky decision-making in smokers (n = 18) and nonsmokers (n = 25), while they performed the BART during functional magnetic resonance imaging (fMRI). The participants were young men and women, 17–21 years of age.

Results

Risk level (number of pumps) modulated brain activation in the right dorsolateral and ventrolateral prefrontal cortices more in smokers than in nonsmokers, and smoking severity (Heaviness of Smoking Index) was positively related to this modulation in an adjacent frontal region.

Conclusions

Given evidence for involvement of the right dorsolateral and ventrolateral prefrontal cortices in inhibitory control, these findings suggest that young smokers have a different contribution of prefrontal cortical substrates to risky decision-making than nonsmokers. Future studies are warranted to determine whether the observed neurobiological differences precede or result from smoking.

Keywords

Nicotine Functional MRI Prefrontal cortex Decision-making 

Notes

Acknowledgments

The research described in this article was funded, in part, by a grant from Philip Morris USA under UCLA contract 20063287. Additional funding was provided by an endowment from the Thomas P. and Katherine K. Pike, Chair in Addiction Studies, and a gift from the Marjorie M. Greene Trust. M Kohno was supported by an institutional training grant, T32 DA024635. All experimental procedures comply with current laws of the United States of America.

Conflict of interest

None.

Supplementary material

213_2013_3113_MOESM1_ESM.pdf (57 kb)
ESM 1 (PDF 57 kb)

References

  1. Acheson A, de Wit H (2008) Bupropion improves attention but does not affect impulsive behavior in health young adults. Exp Clin Psychopharmacol 16:113–123. doi: 10.1037/1064-1297.16.2.113 PubMedCrossRefGoogle Scholar
  2. Addicott MA, Baranger DA, Kozink RV, Smoski MJ, Dichter GS, McClernon FJ (2012) Smoking withdrawal is associated with increases in brain activation during decision making and reward anticipation: a preliminary study. Psychopharmacol (Berl) 219(2):563–73. doi: 10.1007/s00213-011-2404-3 CrossRefGoogle Scholar
  3. Azizian A, Monterosso J, O'Neill JO, London ED (2009) Magnetic resonance imaging studies of cigarette smoking. Handb Exp Pharmacol 192:113–143. doi: 10.1007/978-3-540-69248-5_5 PubMedCrossRefGoogle Scholar
  4. Beckmann C, Jenkinson M, Smith S (2003) General multilevel linear modeling for group analysis in fMRI. NeuroImage 20:1052–1063. doi: 10.1016/S1053-8119(03)00435-X PubMedCrossRefGoogle Scholar
  5. Bogg T, Fukunaga R, Finn PR, Borwn JW (2012) Cognitive control links alcohol use, trait disinhibition, and reduced cognitive capacity: evidence for medial prefrontal cortex dysregulation during reward-seeking behavior. Drug Alcohol Depend 122:112–118. doi: 10.1016/j.drugalcdep.2011.09.018 PubMedCrossRefGoogle Scholar
  6. Borland R, Yong HH, O'Connor RJ, Hyland A, Thompson ME (2010) The reliability and predictive validity of the Heaviness of Smoking Index and its two components: findings from the International Tobacco Control Four Country study. Nicotine Tob Res 12(Suppl):S45–50. doi: 10.1093/ntr/ntq038 PubMedCrossRefGoogle Scholar
  7. Bornovalova M, Cashman-Rolls A, O'Donnell J, Ettinger K, Richards J, deWit H, Lejuez C (2009) Risk taking differences on a behavioral task as a function of potential reward/loss magnitude and individual differences in impulsivity and sensation seeking. Pharmacol Biochem Behav 93:258–262. doi: 10.1016/j.pbb.2008.10.023 PubMedCrossRefGoogle Scholar
  8. Center for Disease Control and Prevention (2008) Cigarette smoking among adults—United States, 2006. MMWR Morb Mortal Wkly Rep 56:1157–1161Google Scholar
  9. Centers for Disease Control and Prevention (2011) Vital signs: current cigarette smoking among adults aged ≥18 years—United States, 2005–2010. MMWR Morb Mortal Wkly Rep 60(33):1207–12Google Scholar
  10. Chiu PH, Lohrenz TM, Montague PR (2008) Smokers' brains compute, but ignore, a fictive error signal in a sequential investment task. Nat Neurosci 11(4):514–20. doi: 10.1038/nn2067. Epub 2008 Mar 2 PubMedCrossRefGoogle Scholar
  11. Claus E, Hutchison K (2012) Neural mechanisms of risk taking and relationships with hazardous drinking. Alcohol Clin Exp Res 36:932–940. doi: 10.1111/j.1530-0277.2011.01694.xC.R.E PubMedCrossRefGoogle Scholar
  12. Coggins CR, Murrelle EL, Carchman RA, Heidbreder C (2009) Light and intermittent cigarette smokers: a review (1989–2009). Psychopharmacology 207(3):343–363. doi: 10.1007/s00213-009-1675-4 PubMedCrossRefGoogle Scholar
  13. Dean A, Sugar C, Hellemann G, London ED (2011) Is all risk bad? Young adult cigarette smokers fail to take adaptive risk in a laboratory decision-making test. Psychopharmacology 215:801–811. doi: 10.1007/s00213-011-2182-y PubMedCrossRefGoogle Scholar
  14. Fecteau S, Knoch D, Fregni F, Sultani N, Boggio P, Pascual-Leone A (2007) Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study. J Neurosci 27:12500–12505. doi: 10.1523/JNEUROSCI.3283-07.2007 PubMedCrossRefGoogle Scholar
  15. Fields S, Collins C, Leraas K, Reynolds B (2009) Dimensions of impulsive behavior in adolescent smokers and nonsmokers. Exp Clin Psychopharmacol 17(5):302–311. doi: 10.1037/a0017185 PubMedCrossRefGoogle Scholar
  16. Fukunaga R, Brown JW, Bogg T (2012) Decision making in the Balloon Analogue Risk Task (BART): anterior cingulated cortex signals loss aversion but not the infrequency of risky choices. Cogn Affect Behav Neurosci 12:479–490. doi: 10.3758/s13415-012-0102-1 PubMedCrossRefGoogle Scholar
  17. Galván A, Poldrack RA, Baker C, McGlennen K, London ED (2011) Neural correlates of response inhibition and cigarette smoking in late adolesence. Neuropsychopharmacology 36:970–978. doi: 10.1038/npp.2010.235 PubMedCrossRefGoogle Scholar
  18. Heishman S (1998) What aspects of human performance are truly enhanced by nicotine? Addiction 93:317–320. doi: 10.1046/j.1360-0443.1998.93690712.x PubMedCrossRefGoogle Scholar
  19. Heishman S (1999) Behavioral and cognitive effects of smoking: relationship to nicotine addiction. Nicotine Tobacco Res Suppl 2:S143–S147. doi: 10.1080/14622299050011971 CrossRefGoogle Scholar
  20. Hommel B, Fischer R, Colzato L, van den Wildenberg W, Cellini C (2012) The effect of fMRI (noise) on cognitive control. J Exp Psychol Hum Percept Perform 38:290–301. doi: 10.1037/a0026353 PubMedCrossRefGoogle Scholar
  21. Hughes J, Hatsukami D (1986) Signs and symptoms of tobacco withdrawal. Arch Gen Psychiatry 43:289–294. doi:  10.1001/archpsyc.1986.018000T. Ida, R. Goto (2009). Interdependency among addictive behaviors and time/risk preferences: discrete choice model analysis of smoking, drinking and gambling. Journal of Economic Psychology, 30:608–621. http://dx.doi.org/ 10.1016/j.joep. 2009.05.003Google Scholar
  22. Jacobsen LK, Mencl W, Constable R, Westerveld M, Pugh K (2007a) Impact of smoking abstinence on working memory neurocircuitry in adolescent daily tobacco smokers. Psychopharmacology 193:557–566. doi: 10.1007/s00213-007-0797-9 PubMedCrossRefGoogle Scholar
  23. Jacobsen LK, Slotkin T, Mencl W, Frost S, Pugh K (2007b) Gender-specific effects of prenatal and adolescent exposure to tobacco smoke on auditory and visual attention. Neuropsychopharmacology 32:453–464. doi: 10.1038/sj.npp.1301398 CrossRefGoogle Scholar
  24. Jarvik M, Madsen D, Olmstead R, Iwamoto-Schaap P, Elins J, Benowitz N (2000) Nicotine blood levels and subjective craving for cigarettes. Pharmacol Biochem Behav 66:553–558. doi: 10.1016/S0091-3057(00)00261-6 PubMedCrossRefGoogle Scholar
  25. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841. doi: 10.1006/nimg.2002.1132 PubMedCrossRefGoogle Scholar
  26. Jentsch J, Woods J, Groman S, Seu E (2010) Behavioral characteristics and neural mechanisms mediating performance in a rodent version of the Balloon Analog Risk Task. Neuropsychopharmacology 35:1797–1806. doi: 10.1038/npp.2010.47 PubMedGoogle Scholar
  27. Kubota K, Yamaguchi T, Abe Y, Fujiwara T, Hatazawa J, Matsuzawa T (1983) Effects of smoking on regional cerebral blood flow in neurologically normal subjects. Stroke 14:720–724. doi: 10.1161/01.STR.14.5.720 PubMedCrossRefGoogle Scholar
  28. Lejuez C, Read J, Kahler C, Richards J, Ramsey S, Stuart G, Strong D, Brown R (2002) Evaluation of a behavioral measure of risk taking: the Balloon Analogue Risk Task (BART). J Exp Psychol: Appl 8:75–84. doi: 10.1016/j.neuron.2005.08.008 CrossRefGoogle Scholar
  29. Lejuez C, Aklin W, Jones H, Richards J, Strong D, Kahler C, Read J (2003a) The Balloon Analogue Risk Task (BART) differentiates smokers and nonsmokers. Exp Clin Psychopharmacol 11:26–33. doi: 10.1037/1064-1297.11.1.26 PubMedCrossRefGoogle Scholar
  30. Lejuez C, Aklin W, Zvolensky M, Pedulla C (2003b) Evaluation of the Balloon Analogue Risk Task (BART) as a predictor of adolescent real-world risk-taking behaviours. J Adolesc 26:475–479. doi: 10.1016/S0140-1971(03)00036-8 PubMedCrossRefGoogle Scholar
  31. Lejuez C, Aklin W, Bornovalova M, Moolchan E (2005) Differences in risk-taking propensity across inner-city adolescent ever- and never-smokers. Nicotine Tob Res 7:71–79. doi: 10.1080/14622200412331328484 PubMedCrossRefGoogle Scholar
  32. Levin J, Frederick BB, Ross M, Fox J, von Rosenberg H, Kaufman M, Lange N, Mendelson J (2001) Influence of baseline hematocrit and hemodilution on BOLD fMRI activation. Magn Reson Imaging 19:1055–1062. doi: 10.1016/S0730-725X(01)00460-X PubMedCrossRefGoogle Scholar
  33. Mendrek A, Monterosso J, Simon S, Jarvik M, Brody AL, Olmstead R, Domier C, Cohen M, Ernst M, London ED (2006) Working memory in cigarette smokers: comparison to non-smokers and effects of abstinence. Addict Behav 31:833–844. doi: 10.1016/j.addbeh.2005.06.009 PubMedCrossRefGoogle Scholar
  34. Poline J-B, Worsley KJ, Evans A, Friston K (1997) Combining spatial extent and peak intensity to test for activations in functional imaging. NeuroImage 5:83–96. doi: 10.1006/nimg.1996.0248 PubMedCrossRefGoogle Scholar
  35. Price C, Friston K (1999) Scanning patients with tasks they can perform. Hum Brain Mapp 8:102–108. doi: 10.1002/(SICI)1097-0193 PubMedCrossRefGoogle Scholar
  36. Rao H, Korczykowski M, Pluta J, Hoang A, Detre J (2008) Neural correlates of voluntary and involuntary risk taking in the human brain: an fMRI study of the Balloon Analog Risk Task (BART). NeuroImage 42:902–910. doi: 10.1016/j.neuroimage.2008.05.046 PubMedCrossRefGoogle Scholar
  37. Reyna VF, Farley F (2006) Risk and rationality in adolescent decision making: implications for theory, practice and public policy. Psychol Sci Public Interes 7(1):1–44. doi: 10.1111/j.1529-1006.2006.00026 Google Scholar
  38. Romberger DJ, Grant K (2004) Alcohol consumption and smoking status: the role of smoking cessation. Biomed Pharmacother 58(2):77–83. doi: 10.1016/j.biopha.2003.12.002 PubMedCrossRefGoogle Scholar
  39. Rose J, McClernon F, Froeliger B, Behm F, Preud'homme X, Krystal A (2011) Repetitive transcranial magnetic stimulation of the superior frontal gyrus modulates craving for cigarettes. Biol Psychiatry 70:794–799. doi: 10.1016/j.biopsych.2011.05.031 PubMedCrossRefGoogle Scholar
  40. Schonberg T, Fox C, Mumford J, Congdon E, Trepel C, Poldrack R (2012) Decreasing ventromedial prefrontal cortex activity during sequential risk-taking: an FMRI investigation of the balloon analog risk task. Front Neurosci 6:80. doi: 10.3389/fnins.2012.00080 PubMedCrossRefGoogle Scholar
  41. Telzer EH, Fuligni AJ, Lieberman MD, Galván A (2013) Meaningful family relationships: Neurocognitive buffers of adolescent risk taking. J Cogn Neurosci 25:374–387. doi: 10.1162/jocn_a_0031 PubMedCrossRefGoogle Scholar
  42. U.S. Department of Health and Human Services (2012). Preventing tobacco use among youth and young adults: a report of the Surgeon General, 2012. U.S. DHHS, Office of the Surgeon GeneralGoogle Scholar
  43. Woolrich M (2008) Robust group analysis using outlier inference. NeuroImage 41:286–301. doi: 10.1016/j.neuroimage.2008.02.042 PubMedCrossRefGoogle Scholar
  44. Xu J, Mendrek A, Cohen M, Monterosso J, Rodriguez P, Simon S, Brody AL, Jarvik M, Domier C, Olmstead R, Ernst M, London ED (2005) Brain activity in cigarette smokers performing a working memory task: effect of smoking abstinence. Biol Psychiatry 58:143–150. doi: 10.1016/j.biopsych.2005.03.028 PubMedCrossRefGoogle Scholar
  45. Xu J, Mendrek A, Cohen M, Monterosso J, Simon S, Jarvik M, Olmstead R, Brody AL, Ernst M, London ED (2007) Effect of cigarette smoking on prefrontal cortical function in nondeprived smokers performing the Stroop Task. Neuropsychopharmacology 32:1421–1428. doi: 10.1038/sj.npp.1301272 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Adriana Galván
    • 1
    • 2
  • Tom Schonberg
    • 3
  • Jeanette Mumford
    • 3
    • 4
  • Milky Kohno
    • 5
  • Russell A. Poldrack
    • 3
    • 4
    • 6
  • Edythe D. London
    • 2
    • 5
    • 7
    • 8
  1. 1.Department of PsychologyUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Brain Research InstituteUniversity of California, Los AngelesLos AngelesUSA
  3. 3.Imaging Research CenterUniversity of Texas, AustinAustinUSA
  4. 4.Department of PsychologyUniversity of Texas, AustinAustinUSA
  5. 5.Department of Psychiatry and Biobehavioral SciencesUniversity of California, Los AngelesLos AngelesUSA
  6. 6.Department of NeurobiologyUniversity of Texas, AustinAustinUSA
  7. 7.Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesUSA
  8. 8.Semel Institute for Neuroscience and Human Behavior, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations